Knowledge graphs for NLP: A comprehensive analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.18Keywords:
Knowledge graph, Natural language processing, Applications of KGsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Comprehensive analysis done for this paper examines the blend of knowledge graphs (KGs) and natural language processing (NLP), emphasizing the collective potential of both techniques to improve understanding and processing of textual data amid its rapid growth. KGs provide structured semantic representations that facilitate deeper reasoning and contextual understanding, addressing the limitations inherent in traditional NLP approaches. By consolidating insights from over 79 research papers, the review in-depth explores the definitions, applications, and challenges related to the integration of KGs and NLP, as well as their synergistic applications in multiple domains, such as question answering, sentiment analysis, and text summarization. The review underscores the transformative impact of KGs in bridging unstructured text with structured data, paving the way for innovative methodologies in AI applications. Additionally, it identifies prevailing challenges in the construction and management of KGs while emphasizing the ongoing evolution and promising future of this integrated approach in tackling real-world NLP challenges. The findings aim to benefit both researchers and practitioners in the field, promoting the adoption of KG-based methods across diverse applications.Abstract
How to Cite
Downloads
Similar Articles
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sharada C, T N Ravi, S Panneer Arokiara, Lancaster sliced regressive keyword extraction based semantic analytics on social media documents , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Krupali Bhatt, Tushharkumar Bhatt, Certain findings on the gamma graph of some graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Rudrapati Bhuvaneswara Prasad, Avutala Mallikarjuna Reddy, Edge properties of lexicographic product graphs of open neighborhood graphs , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

