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Knowledge graphs for NLP: A comprehensive analysis
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Abstract

Comprehensive analysis done for this paper examines the blend of knowledge graphs (KGs) and natural language processing (NLP),
emphasizing the collective potential of both techniques to improve understanding and processing of textual data amid its rapid
growth. KGs provide structured semantic representations that facilitate deeper reasoning and contextual understanding, addressing the
limitations inherent in traditional NLP approaches. By consolidating insights from over 79 research papers, the review in-depth explores
the definitions, applications, and challenges related to the integration of KGs and NLP, as well as their synergistic applications in multiple
domains, such as question answering, sentiment analysis, and text summarization. The review underscores the transformative impact of
KGs in bridging unstructured text with structured data, paving the way for innovative methodologies in Al applications. Additionally, it
identifies prevailing challenges in the construction and management of KGs while emphasizing the ongoing evolution and promising
future of this integrated approach in tackling real-world NLP challenges. The findings aim to benefit both researchers and practitioners
in the field, promoting the adoption of KG-based methods across diverse applications.
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Introduction

In recent years, textual data has experienced exponential
growth thereby creating a pressing need for the
development of advanced solutions to understand,
process, and derive meaningful insights from natural
language. From conversational agents and search engines
to automated summarization and sentiment analysis,
natural language processing (NLP) applications have
become integral to modern technology. In spite of
significant advancements, many NLP systems still face
challenges in capturing the deeper semantics, reasoning,
and contextual understanding that is considered necessary
for human-like comprehension. Knowledge graphs (KGs)
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have evolved as a popular transformative tool to enhance
NLP by providing structured, semantic representations of
information. KGs represent entities and their relationships
as interconnected graphs, enabling machines to reason
and infer beyond surface-level text. The integration of KGs
with NLP has shown immense potential across a variety of
applications, inclusive of question answering, sentiment
analysis, and text summarization. KGs enable machines
to go beyond text-based pattern matching and engage
in semantic reasoning, answering complex queries and
drawing connections between seemingly unrelated pieces
of information. The integration of KGs with NLP has opened
new avenues for innovation, addressing the limitations of
traditional NLP approaches. They have shown immense
potential in enhancing NER, question answering systems,
text summarization, semantic search, as well as sentiment
analysis.

By consolidating insights from over 79 research papers,
the literature review offers a thorough understanding of
the integration of knowledge graphs and natural language
processing. The findings will benefit not only researchers
but also practitioners seeking to apply KG-based methods
to real-world NLP challenges.

Background and Fundamentals

Knowledge Graphs (KGs)

Graphical representation holds significant importance as
it offers a natural and flexible approach to representing
complex relationships and interactions between entities.
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This quality makes graphs out to be a particularly valuable
asset in fields like computer science, mathematics, biology,
and social sciences. Their ability to model complex systems,
facilitate efficient computation, and power advanced Al
applications makes them indispensable in many areas of
research and industry.

A Knowledge Graph is specifically a well-structured
representation of knowledge in the form of entities and the
relationships between them, typically organized as a graph.
The use of the term “knowledge graph” can be referenced
backto 2012 when Google introduced its Knowledge Graph
as part of its search engine to provide richer, contextually
aware search results (Singhal A, 2012). After this introduction,
a significant increase in the research of Knowledge Graphs
can be observed. Since Google’s introduction, Knowledge
Graphs have also been employed by Facebook, Microsoft
Bing, IBM Watson, and eBay (Noy N & Gao Y, 2019). Openly
available Knowledge Graphs for DBpedia, YAGO, and
Freebase have also emerged since (Paulheim H, 2016).
Knowledge Graphs are said to have originated as a new
framing attributed to the research on semantic networks,
ontologies, and linked data (Hitzler P, 2021).

Defining Knowledge Graphs

During this literature survey, it was observed that there is a
lot of discussion about what can be the correct definition
of a Knowledge Graph. While a number of definitions
that are conflicting at times have emerged, one states
the Knowledge Graph definition as “a graph of data
intended to accumulate and convey knowledge of the real
world, whose nodes represent entities of interest and whose
edges represent potentially different relations between these
entities” (Hogan A & Blomqvist E, 2021). Another definition
states that “Knowledge graphs are large networks of entities,
their semantic types, properties, and relationships between
entities” (Kroetsch M, & Weikum G, 2016). They have also
been defined as “a network of all kinds of things which are
relevant to a specific domain or to an organization. They are not
limited to abstract concepts and relations but can also contain
instances of things like documents and datasets” (Blumauer
A, 2014). One definition stated that “A knowledge graph (i)
mainly describes real-world entities and their interrelations,
organized in a graph, (i) defines possible classes and relations
of entities in a schema, (iii) allows for potentially interrelating
arbitrary entities with each other and (iv) covers various topical
domains”. A definition that describes knowledge graphs
as a Resource Description Framework (RDF) graph, states
that “We define a Knowledge Graph as an RDF graph. An RDF
graph consists of a set of RDF triples where each RDF triple (s,
p, 0) is an ordered set of the following RDF terms: a subject s
€ U U B, a predicate p € U, and an object UU B U L. An RDF
term is either a URI u € U, a blank node b € B, or a literal | €
L” (Fdrber M, & Bartscherer F & Menne C, & Rettinger A, 2017).
Uponiillustrating a knowledge graph architecture, shownin
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Figure 1: Architecture of Knowledge Graph
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Figure 1, it can lead to a definition that states “a knowledge
graph acquires and integrates information into an ontology
and applies a reasoner to derive new knowledge” (Ehrlinger
L, & Wol3 W, 2016).

Therefore, it can be inferred that, while the knowledge
graph is not entirely a new technology, however the
requirement for a unified, non-conflicting definition still
remains.

Applications of Knowledge Graphs

Knowledge Graphs are being utilized widely in a multitude
of fields, ranging from research to industry. Apart from the
applications of Knowledge Graphs discussed previously,
this section brings to attention some more use cases.
Several innovative ideas can be observed. One proposal
showcased that Intelligent Digital Twins architecture was
enhanced with the use of Knowledge Graphs (Sahlab N &
Rychkova | & Dandash O & Lachenal C & Schleich B, 2021;
SuC&HanY &Tang X & Jiang Q & Wang T & He Q, 2024).
Upon summarizing the use of KGs in drug discovery, one
article presented a case study on COVID-19 research, which
has leveraged knowledge graphs to identify potential
drug candidates for repurposing (MacLean F & 2021). The
industrial application of Knowledge Graphs stems from
their potential to enhance intelligent systems. Applications
include the use of KGs for fault diagnosis (Liu Y & Zhang H &
Li X & Wang J, 2021), the food and science industry (Min W &
LiuZ&Wang C&Yang Y & Zhao J, 2022), process knowledge
applications (Lv Y & Wang Z & Li J & Chen X, 2024), as well
as the medical field (Qu J, 2022). Few use cases of KGs in
the medical sector explored applications regarding the
construction of a Knowledge Graph for the Traditional
Medicine system of China (Traditional Chinese Medicine -
TCM) (Zhang Y & Hao Y, 2024), a kidney stone disease-specific
knowledge graph construction (Man J & ShiY & Hu Z & Yang
R&Huang Z & Zhou Y, 2024), proposal of an electronic health
record-oriented knowledge graph system for collaborative
clinical decision support (Shang Y & Zhang W & Liu P & Li J
& Chen X, 2024). KGs are also said to be highly useful in the
cases of automatic question answering (Zhang F & Zhang
Y & Xu T, 2020). One study showcased a framework for the
construction of a forestry policy knowledge graph upon
addressing the lack of research on policy knowledge graph
construction methods (Sun J & Luo Z, 2024). KGs have also
been employed for chatbots, which in turn emphasizes
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their highly significant role in developing Al assistants
(Rajabi E & George A N & Kumar K, 2024). The result of the
lack of guidance in agricultural remote sensing research,
construction methods and applications of an agricultural
remote sensing concept graph has also been discussed (Xu
L & Zhang Y & Wang J & Li H, & Chen M, 2024). One study
introduced an intelligent adaptive learning model, which is
enabled by a knowledge graph and BiLSTM-CRF, showcasing
its potential applications (Zhu Y, 2024).

Challenges of Knowledge Graphs

While KGs have become a popular tool to represent and
organize complex information in various domains, their
construction and management present several challenges
that researchers are actively working to address.

Studies have highlighted the importance of correctness
and completeness in dynamic knowledge graphs (DKGs)
and discussed the impact of factors such as data sources,
graph construction models, and evaluation methods on
the accuracy of dependent applications (Farghaly M & Ali
H & El-Meligy M & Youssef A, 2024). The challenges and
progress have been discussed in graph domain adaptation
(GDA), which combines graph representation learning
and domain adaptation to facilitate transfer learning on
graphs (ShiB & Zhang T & Li X & Wang Y, 2024). Studies also
emphasize the challenges in representing heterogeneous
graphs and the need for effective measurement, analysis,
and mining techniques (Wang X & Li J & Zhao R & Zhou
Q, 2024). Refinement methods include a proposal of data
management techniques to scale up the creation of KGs
(Iglesias E & Ferndndez J D & Priyatna F & Corcho O, 2024),
introduction of new types of representational entities in
knowledge graphs (Vogt L, 2024), accurate retrieval from
textual KGs for answering complex real-world questions
(HuangJ&Zhao T &Liu Y & Wang X, 2024), and a novel graph
neural network model (Ding W & Cherukumalli M & Chikoti
S & Chaudhri V K, 2024) to name a few.

From the time Google released the google knowledge
graph, research on KGs has flourished, achieving
advancements in tasks like searching, entity resolution, and
link prediction, with applications spanning ecosystems from
companies like eBay and Amazon to scientific fields such
as biology, geology (Kejriwal M, 2022). As research in this
field progresses, novel methodologies and applications are
emerging to enhance the capabilities of knowledge graphs
(Ji S &Pan S & Cambria E & Marttinen P& Yu P S, 2021).

Natural Language Processing (NLP)

NLP, a branch of artificial intelligence (Al) and linguistics, is
dedicated to empowering computers to process, interpret,
generate, and engage with human language. NLP acts as a
bridge between human language (aka, natural language)
and machine understanding, thereby making it possible
for computers to process textual and speech data and

analyze large volumes of it. The core tasks of NLP include
text understanding (breaking text into smaller units,
identifying certain entities, and understanding grammatical
roles and relationships), text analysis (sentiment analysis,
identifying main topics of discussion, and classifying
text into predefined labels), language generation (text
summarization, language translation, question answering,
and chatbots and conversational Al), and speech and
language interaction ( spoken language converted to text,
and text converted to spoken language).

Significant advancements can be seen in the domain
of NLP, with researchers exploring various techniques and
applications within the field. Highly informative studies
can be found that focus on showcasing the potential of
randomized algorithms in NLP tasks (Ravichandran D
& Pantel P & Hovy E, 2005), the importance of domain
adaptation in NLP (Jiang J & Zhai C, 2007), models for
understanding and processing metaphorical language in
NLP (Shutova E, 2010), the importance of statistical analysis in
NLP research (Berg-Kirkpatrick T & Burkett D & Klein D, 2012),
the significance of interpretability in neural NLP systems (Li
J & Chen X & Hovy E & Jurafsky D, 2015) and transferability
of neural networks (Mou L & Meng Z & Yan R & Li G & Xu
Y & Zhang L & Jin Z, 2016), and techniques for clinical text
processing in diverse linguistic contexts (Névéol A & Dalianis
H & Velupillai S & Savova G & Zweigenbaum P, 2018).

Applications of NLP

The application of NLP is widely explored in various fields,
showcasing its versatility and effectiveness in different
domains. The application of NLP in social media data
analysis was showcased by introducing a technique for
sentiment analysis in tweets (Mahzari M & Alshammari
A S & Mehdizadeh A & Ghaffari M, 2024). The potential
of NLP in synthesizing existing research and identifying
future research directions has also been highlighted (Ye J
& Wang Y & Liu X & Zhang H, 2024). The incorporation of
NLP techniques in medical education program evaluation
has been explored (Costa-Dookhan K A & Jones T & Patel
M & Smith R, 2024). Additionally, research on NLP methods
is applied in dermatology (Paganelli A & Rossi M & Bianchi
L & Ferrara G, 2024) and psoriasis (Shapiro J & Klein T &
Williams P & Chen H, 2024), thus showcasing the diverse
applications of NLP in healthcare settings. One study
emphasized the importance of advancing rheumatology
with NLP techniques to improve the detection and diagnosis
of disease, along with patient management, underscoring
the need for targeted research to fully realize NLP’s potential
in clinical practice (Omar M & Ali N & Patterson C, 2024).
Another study validated the use of an oncology NLP model
in extracting clinical insights from non-small cell lung cancer
data, demonstrating the reliability and generalizability of
NLP models in supporting research studies and clinical trials
(Kenney R C & Shah P & Gupta L & Brown D, 2024).
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Challenges of NLP

Natural Language Processing has seen significant
advancements in various domains, but it also faces several
challenges that researchers and practitioners need to
address. One of the challenges highlighted in the literature
is the processing of highly unstructured clinical notes lacking
proper grammar and punctuation in the healthcare domain,
which makes data processing extremely difficult (Mekhtieva
R L & Thompson B & Wang X & White S, 2024). Another
challengein NLP is the integration of generative Al tools into
enterprise-critical software systems (Ghaisas S & Singhal A,
2024). Regarding text classification, particularly in multi-label
text classification (MLTC), learning effective representations
remains a significant challenge in NLP (Audibert A & Gauffre
A & Amini M R, 2024). One study highlighted the ethical
implications surrounding the use of generative Al tools in
NLP in a comparative analysis of various Al tools, talking
about their pros and cons and the regulatory challenges
faced (lorliam A & Ingio J A, 2024). Challenges regarding
language are quite common regarding contextual words,
synonyms, homonyms, sarcasm and irony, sentences with
ambiguity, phrases that sound informal, expressions, idioms,
and culture-specific lingo (Khurana D & Koli A & Khatter K
& Singh S, 2023).

RELATED WORK ON KNOWLEDGE GRAPHS IN NLP
This section examines the Knowledge Graphs and its
integration with natural language processing techniques.
Knowledge Graphs have become an essential componentin
Natural Language Processing tasks, providing a structured
representation of information and relationships within text
data. They allow for the integration of structured knowledge
with data-driven models, brought about by the blending
of neural models and knowledge graphs for enhanced
representations beyond individual approaches (Gomez-
Perez J M & Denaux R & Garcia-Silva A, 2020).

Fundamental NLP tasks such as lexical analysis, syntactic
analysis, and semantic understanding and advanced
technologies like word embedding are covered before
delving into the complete process of knowledge graph
construction (Wang Z, 2024). NLP can help unlock the full
potential of scientific knowledge graphs by connecting
unstructured text with structured data, paving the way
for more intelligent and automated research workflows
(Quevedo X & Chicaiza J, 2023). A survey conducted on KGs
in NLP noted that while studies spanning various domains
explored up-and-coming topics such as knowledge graph
embedding or augmented language model, a lack of
secondary research and evaluations in practice still exists
(Schneider P & Schopf T & Vladika J & Galkin M & Simperl E
& Matthes F, 2022).

Graph Neural Networks (GNNs) used for knowledge
graph rewiring and document classification in NLP, in
order to extract complex patterns within text data and

relationships present in those data entities have been
explored (Romanova A, 2024). One study focused on
predicting treatment relations between biomedical entities
using semantic patterns over biomedical knowledge graphs
to identify new possible treatment options for medical
conditions (Bakal, G., & Kavuluru R., 2015).

By studying related works, it was observed that a
number of novel methods, tools, systems, and frameworks
have been developed in recent years that leverage the
integration of knowledge graphs and NLP. A two-stage
annotation methodology to build a knowledge graph of NLP
contributions directly from scholarly articles, highlighting
the limitations of structuring contributions compared to
other STEM fields, was developed (D’souza J & Auer S, 2021).
As a way of improving semantic analysis in biomedical NLP
applications, a method is proposed that combines two
models: one of knowledge graph-based language and
another nearest-neighbor (Naseem U & Khan M A & Hussain
M & Kim J, 2023). As autonomous NLP methods may lack
accuracy in the creation of high-quality knowledge graphs,
a study introduced a methodology named ‘TinyGenius/,
which validates NLP-extracted knowledge statements
using microtask crowdsourcing (Oelen A & Stocker M &
Auer S, 2022). A group-specific approach to NLP for hate
speech detection was utilized, leveraging a knowledge
graph of antisemitic history and language to improve model
performance (Halevy K, 2023). One study developed NLP-KG,
a feature-rich system for exploratory searches of scientific
literature in NLP fields, aiming to support researchers in
navigating unfamiliar research areas (Schopf T & Matthes F,
2024). Another study introduced the ARCH system, which
constructs a large-scale knowledge graph by analyzing and
aggregating codified narrative health records, providing
valuable clinical insights for research and clinical care (Gan Z
&WangT&LiJ&ZhangH, 2023). Another such tool presented
is the web-based CleanGraph, designed for human-in-the-
loop refinement and completion of knowledge graphs
(Bikaun T & Stewart M & Liu W, 2024). A framework named
Graphusion has been presented for constructing knowledge
graphs from free text, emphasizing the importance of KGs
in artificial intelligence applications and downstream tasks
like Question Answering systems (Yang R & Yang B & Ouyang
S&SheT&Feng A &Jiang Y &Lil, 2024). A Political Experts
through Knowledge Graph Integration (PEG) framework
to address challenges in aggregating and comprehending
political information has been proposed, highlighting the
importance of integrating local and global knowledge
(Mou X & Li Z & Lyu H & Luo J & Wei Z, 2024). One study
focused on Community Knowledge Graph Abstraction
for Enhanced Link Prediction, specifically studying the
PubMed Knowledge Graph (Zhao Y & Li M & Sun J & Xu B,
2024). An automatic knowledge graph constructed from
literature and NLP-based reasoning network framework and
ontology was created, emphasizing structured knowledge
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representation in NLP tasks (Chen H & Luo X, 2019). A
knowledge extraction framework, a 2-phase framework,
was introduced, decoupling knowledge extraction from
English texts with competitive precision and recall rates
(Corcoglioniti F & Rospocher M & Aprosio A P, 2016). As a
way of integrating extra knowledge into word embedding
models for biomedical NLP tasks, GCBOW and GSkip-gram
models were proposed, which incorporate graphs into
CBOW and Skip-gram models through graph regularization
(Ling Y & Xu H & Liu Y & Zhao Y, 2017). SCICERO is a novel
approach for automatically generating Scientific Knowledge
Graphs in Computer Science by extracting entities and
relationships from research papers using NLP techniques,
deep learning models, and ontology-based validation
(Dessi D & Osborne F & Atzori M & Motta E, 2022). A study
presented a novel method that enhances NLP models by
integrating knowledge graphs, using attention mechanisms
and convolution-based encoding to improve performance,
reduce reliance on labeled datasets, and significantly boost
text classification and natural language inference accuracy
(Annervaz KM & Chowdhury S B R & Dukkipati A, 2018). A
pipeline was developed to transform scientific publications
to a structured scientific knowledge graph, by integration
of advanced NLP tools and machine learning techniques,
merging their results to represent detailed knowledge in
the Semantic Web domain, with evaluations demonstrating
that tool integration improves the quality and performance
of the resulting graphs (Dessi D & Osborne F & Reforgiato
Recupero D & Motta E, 2021).

Studies have also identified the limiting factors of the
current state of this domain and proposed novel solutions
for the identified issues. The Geography-Graph Pre-trained
model (G2PTL) addresses existing NLP model limitations in
geographic knowledge to enhance geospatial tasks (Wu L
& Li H & Zhang P & Zhao W, 2024). The GLAME model was
proposed to address challenges in updating knowledge
in LLMs, using knowledge graphs to enhance editing and
improve post-edit generalization (Zhang M & Ye X & Liu Q &
Ren P & Wu S & Chen Z, 2024). A Graph Recurrent Network
(GRN) was introduced in order to effectively tackle graphical
NLP challenges (Song L, 2019). One study highlighted the
limitations in Sanskrit NLP for automated knowledge base
construction, leading to manual annotation efforts for
knowledge graph creation (Terdalkar H & Bhattacharya A &
Dubey M & Singh B N, 2022).

A review of advances in named-entity extraction as a key
task for transforming natural language texts into knowledge
graphs highlights the need for disambiguation, linking,
and joint learning approaches integrated with modern
NER techniques while emphasizing challenges such as the
lack of evaluation standards and the shift towards deep-
learning-based, end-to-end systems that analyze mentions
and entities in context (Al-MosImi T & Ocafia M G & Opdahl

A L & Veres C, 2020).

Overall, it can be said that the integration of knowledge
graphs with NLP models has shown immense promise in
enhancing semantic analysis, knowledge representation,
and information retrieval in various research domains.
However, more and more research is required to explore the
full capabilities of knowledge graphs for NLP applications.

Future Directions

Future research in KGs for NLP is expected to focus on
deeper integration of KGs with large language models
(LLMs), which will enhance accuracy, reasoning and
explainability. Advances in automated KG construction
using self-supervised and deep learning techniques will
improve scalability and reduce manual effort in entity
and relation extraction. The emergence of multimodal
knowledge graphs, incorporating text, images, and
structured data, will enable richer context understanding
in NLP applications. Additionally, KG-based reasoning will
play a crucial role in improving interpretability and few-
shot learning capabilities. Personalization and context-
aware NLP systems will benefit from dynamically adaptive
KGs, enhancing applications such as recommendation
systems and conversational Al. Standardization efforts in
KG evaluation metrics and dataset benchmarking will be
necessary to ensure interoperability and reliability. Lastly,
addressing ethical concerns, including bias, fairness, and
data privacy, will be critical in developing responsible
KG-driven NLP models for real-world deployment.
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