Lancaster sliced regressive keyword extraction based semantic analytics on social media documents
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.14Keywords:
Semantic Analytics, Natural Language Processing, Social Media, Lancaster Tokenized, Sliced Inverse Regression, Keyword Extraction.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Semantic analytics is one of the new issues materialized in Natural Language Processing (NLP) with the emergence of social networks. Semantic analytics on social media documents refers to the procedure of employing NLP techniques for analyzing deeper sense and context of text on social media platforms. Making use of amount of information being now available, research and industry have attempted materials and mechanisms to analyze sentiments automatically in social networks.It just goes beyond keyword exploration to understand the associations between words, phrases and concepts within a social media post, recognizing for a more refined clarification of user sentiment and purpose. While the extensive greater part of these days researchare completely concentrating on enhancing the algorithms employed for sentiment evaluation, the present one emphasizes the advantages of employing a semantic based method for representing the analysis’ results, the emotions and social media specific concepts. In this work a method called, Lancaster Tokenized Sliced Inverse Regressive Keyword Extraction (LT-SIRKE) for performing efficient semantic analysis on social media documents is introduced. LT-SIRKE technique is divide as query pre-processing as well as keyword extraction. Initially in LT-SIRKE method, the user inputs their query into the user window. Afterward, the query is sent to the system for efficient pre-processing. In query pre-processing phase, Stochastic Gradient Descent Keras-based tokenization, Lancaster-based stemming and Zipf’s Law-based stop word removal process is carried out. After preprocessing, keywords are extracted using Bayesian Averaging and Sliced Inverse Regression-based Keyword Extraction to facilitate efficient information access. Experimental assessment is performed with various metrics namely precision, recall, accuracy, keyword extraction time and error with number of user requested queries.Abstract
How to Cite
Downloads
Similar Articles
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kunal Lanjekar, Prashant Kalshetti, Joe C. Lopez, Role of social media in lead generation , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.