Lancaster sliced regressive keyword extraction based semantic analytics on social media documents
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.14Keywords:
Semantic Analytics, Natural Language Processing, Social Media, Lancaster Tokenized, Sliced Inverse Regression, Keyword Extraction.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Semantic analytics is one of the new issues materialized in Natural Language Processing (NLP) with the emergence of social networks. Semantic analytics on social media documents refers to the procedure of employing NLP techniques for analyzing deeper sense and context of text on social media platforms. Making use of amount of information being now available, research and industry have attempted materials and mechanisms to analyze sentiments automatically in social networks.It just goes beyond keyword exploration to understand the associations between words, phrases and concepts within a social media post, recognizing for a more refined clarification of user sentiment and purpose. While the extensive greater part of these days researchare completely concentrating on enhancing the algorithms employed for sentiment evaluation, the present one emphasizes the advantages of employing a semantic based method for representing the analysis’ results, the emotions and social media specific concepts. In this work a method called, Lancaster Tokenized Sliced Inverse Regressive Keyword Extraction (LT-SIRKE) for performing efficient semantic analysis on social media documents is introduced. LT-SIRKE technique is divide as query pre-processing as well as keyword extraction. Initially in LT-SIRKE method, the user inputs their query into the user window. Afterward, the query is sent to the system for efficient pre-processing. In query pre-processing phase, Stochastic Gradient Descent Keras-based tokenization, Lancaster-based stemming and Zipf’s Law-based stop word removal process is carried out. After preprocessing, keywords are extracted using Bayesian Averaging and Sliced Inverse Regression-based Keyword Extraction to facilitate efficient information access. Experimental assessment is performed with various metrics namely precision, recall, accuracy, keyword extraction time and error with number of user requested queries.Abstract
How to Cite
Downloads
Similar Articles
- Dinesh Kumar Verma, Ruchi Tripathi, Vijai Krishna Dsa, Rakesh Kumar Pandey, Histopathological Changes in Liver and Kidney of Heteropneustes fossilis (Bloch) on Chlorpyrifos Exposure , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- V. Yamuna , P. Kandhavadivu, Recent developments in the synthesis of superabsorbent polymer from natural food sources: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Syam Sundar. S, Direct reuse of scour and bleach effluent water for cotton knitted fabrics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- T. Kanimozhi, V. Gowtham Raaj, C. R. Santhosh, Impulsively intended buying behavior: A new horizon of shopping behavior in the online era , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

