AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.06Keywords:
Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify consumption behaviour correctly as normal or suspicious. An real dataset is used to train and evaluate the suggested model of smart meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and memory in detecting energy theft. This emphasizes the necessity of further research and model refinement to enhance its effectiveness in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.Abstract
How to Cite
Downloads
Similar Articles
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper

