
Abstract
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering 
economic growth and sustainability.  Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, 
contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced 
Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity 
theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid 
approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine.  TCNs are used 
in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic 
of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify 
consumption behaviour correctly as normal or suspicious.  A real dataset is used to train and evaluate the suggested model of smart 
meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results 
present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and 
memory in detecting energy theft.   This emphasizes the necessity of further research and model refinement to enhance its effectiveness 
in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers. 
Keywords: Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light 
Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.
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Introduction 
The foundation of contemporary economic growth and 
societal advancement is the electrical power sector, with 
access to affordable and dependable electricity being 
essential for commercial activity, industrial expansion, 
and quality of life. However, the substantial amount of 
Aggregate Technical and Commercial (AT&C) damages 
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that take place between the places of generation and 
end-user consumption is a recurring problem for power 
distribution utilities around the world. These losses 
undermine sustainability goals and economic development 
initiatives by contributing to increased carbon emissions 
through additional generation requirements, in addition 
to representing significant financial leakage for utilities, 
estimated at over $200 billion annually worldwide. The two 
distinct elements that comprise AT&C losses, both non-
technical (NTLs) and technical (TLs), are most prevalent in 
the distribution sector. (Navani et al., 2012).  

NTLs, sometimes referred to as Energy molecules that 
are supplied and utilized, are considered economic losses, 
but for which the electric power company does not issue a 
charge. An NTL can be accounted for in four different ways 
(Smith, 2004).

By manipulating energy meters to record lower 
consumption than is really utilized, fraud entails misleading 
an electric power company. A bypass is a covert way to 
connect to the load from the power grid without going via 
the energy meter. Another prevalent practice is bribery, 
and both customers and personnel may be corrupt. When 
a residential customer moves out, a commercial customer’s 
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business files for bankruptcy, or a meter breaks, they may 
neglect their energy bill. This is known as non-payment.  

The worldwide issue of NTL impacts underdeveloped, 
emerging, and even fully developed nations. The study of 
Northeast Group LLC (LLC, 2017) claims that 96 billion USD 
has been lost every year worldwide. An estimated USD 6 
billion was lost annually by power utilities in the United 
States in 2009 (McDaniel & McLaughlin, 2009). Among the 
most powerful companies in Canada, BC Hydro stated that 
the yearly loss from electricity fraud in 2011 was over CA$100 
million (Hydro, 2010). 

The situation tends to get worse in developing and 
impoverished nations. An estimated USD 58.7 billion is lost 
annually by the major rising nations (de Souza Savian et 
al., 2021). In 2022, NTLs accounted for 14.6% of all losses on 
the low-voltage power grid in Brazil. NTLs accounted for 
6.3% of the overall loss in the Brazilian system as a whole 
(low, medium, and high voltage). In several Latin American 
nations, energy firms, users, and even those who haven’t 
engaged in any sort of fraud share some of the financial 
losses brought on by NTL (de Oliveira Ventura et al., 2020).  

Clandestine illegal connections can have a detrimental 
impact on Power Quality (PQ) since the power flowing 
through the system is not what is intended. Disturbances, 
including voltage swings, over voltages, under voltages, and 
harmonics, among other issues, could arise in this situation 
(Olaoluwa, 2017). This may lead to widespread blackouts 
or even fire concerns. Since the advent of smart grids (SG), 
advanced metering infrastructure (AMI) technologies 
have been created to make it easier for an energy meter 
and the electrical source to communicate. This reciprocal 
relationship, however, invariably results in cybersecurity 
issues, including data leaks and theft/alteration of customer 
electrical data (Wang & Lu, 2013) (El Mrabet et al., 2018). 
Stated differently, it is possible to hack and reprogram the 
AMI in order to perpetrate fraud, including electricity theft 
(Morgoev et al., 2023). The power provider may lose even 
more money as a result of new energy theft techniques 
that have been created to target AMI with the standard 
tampering that was used to commit fraud. 

Therefore, to further halt the growth of NTL, new 
methods or systems for detecting theft of electricity 
must be developed. Given the significant financial losses, 
decrease in PQ, and new methods of power theft using AMI. 
Utilizing the massive volume of data delivered and stored 
in the SG, machine learning (ML), and deep learning (DL) 
algorithms may be developed to effectively identify the type 
and timing of energy fraud. Machine learning algorithms 
have shown promise in detecting abnormal consumption 
patterns indicative of electricity theft or meter tampering. 
Supervised learning approaches like gradient boosting 
techniques, support vector machines (SVM) and random 
forests demonstrated excellent accuracy in classifying 

legitimate versus fraudulent consumption patterns when 
trained on labelled historical data (Hashim et al., 2024). 
Unsupervised learning techniques, such as clustering 
algorithms and anomaly detection methods, can identify 
consumer segments with similar consumption patterns and 
flag outliers. Techniques for deep learning, include temporal 
convolutional networks (TCNs), recurrent neural networks 
(RNNs) and long short-term memory networks (LSTMs), can 
simulate complex sequential patterns in electricity usage, 
enabling detection of subtle anomalies (Ahmad et al., 2022). 

AI techniques also support the prioritization of 
investigation resources, allowing utilities to optimize 
inspection schedules and adapt to evolving theft techniques. 
The combination of AI and smart meters offers more 
chances for technological loss reduction through improved 
system monitoring and optimization (Li et al., 2019). 
Neural network-based load forecasting, distribution state 
estimation algorithms, and voltage and reactive power 
optimization algorithms can minimize technical losses 
through improved control of grid parameters. However, 
implementing AI-driven loss reduction programs presents 
practical challenges, such as data quality issues, privacy 
concerns, transparency and explainability challenges, and 
regulatory frameworks. Emerging technologies, such as 
edge computing architectures, blockchain-based metering 
systems, and federated learning approaches, promise to 
further enhance the capabilities of AI-driven loss reduction 
systems. This study aims to develop a hybrid methodology 
to identify the kind of power theft in distributed energy 
networks.

Related work  
In Ramos et al. (2011), in order to train the Optimum Path 
Forest classifier (OPF), data from commercial and industrial 
users were used. Other electrical measurements, such as 
installed power (Pinst), power factor (PF), reactive utilization 
of energy (kVArh), among others, were employed in place 
of energy consumption (kWh). The classifier’s accuracy was 
increased by reducing the problem’s dimensionality and 
extracting significant features using the Harmony search 
(HS) approach. Additionally, HS outperformed principal 
component analysis (PCA), another conventional feature 
extraction method.  

Having a labelled dataset that shows if a customer has 
committed fraud is uncommon. In light of this, as well as 
using AMI data, reference. (Jokar et al., 2015) Suggested 
six formulas that employ data from trustworthy users to 
produce harmful samples. The data produced by these 
equations and previous Data is used to create a multiple-
class SVM for every customer. A transformer meter’s 
measurement of a neighbourhood’s overall energy usage 
and the amount of energy supplied by intelligent meters 
are compared in an energy theft detection. Customers in 
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that area are marked as suspects if an NTL is found, and 
the classifier determines whether or not any of them are 
engaging in fraud based on news samples from each of 
these customers.  

(Zanetti et al., 2017) Used a similar technique, which 
also needs information from the low-voltage grid (LVG) 
transformer’s meters and presented two more equations 
to produce malicious samples. It compares the reports 
from the domestic smart meters and the LVG meter using a 
“detector.” Then, people with unusual consumption habits 
are identified using a state device method that creates three 
square states:  typical (G1), suspect (G2), or abnormal (G3).  

(Dey, S., Ghosh, S., & Pal, 2020) used an actual classified 
dataset with intervals with daily readings to build a network 
of neurons with two distinct components. To capture 
the global characteristics of 1D data (electricity usage 
time series), the first, referred to as the broad network, is 
composed of completely linked layers. The second, called 
the Deep Convolutional Neural Network (CNN), determines 
if energy theft is non-periodic and whether a regular 
user is periodic by using 2-D data (weekly measurements 
are created from the 1-D data). Ultimately, by mixing the 
results, an activated sigmoid is produced of both networks 
to determine whether or not a customer has engaged in 
fraud. A number of pre-processing methods were used to 
enhance the model’s functionality, including interpolation 
using linearity to impute values that are absent and the 
empirical principle, which finds outliers in the data set by 
calculating two deviations of the mean value.  

In (Messinis et al., 2019), a novel equation for modelling 
energy theft is put forth. It considers the linear growth 
of an assault as time passes, meaning that power usage 
declines gradually as opposed to suddenly. The detection 
of NTLs is then carried out using a combination of electrical 
system efficiency, Support Vector Machines (SVM), and volt 
sensitivity analysis. The result is based on a few equations, 
as well as this newly suggested equation.  

It is commonly recognized that there are more instances 
of trustworthy users than malicious ones in labeled energy 
theft datasets. As a result, these datasets are regarded 
as imbalanced and may present learning challenges for 
machine learning algorithms (Domingues et al., 2018). 
With the same dataset as (Dey, S., Ghosh, S., & Pal, 2020) 
the authors of (Khan et al., 2020) extracted features using 
a VGG-16 design, which has several mixing and layers for 
convolution, and performed the final classification using 
an XGBoost (Decision Tree-based method). The high-level 
parameters of XGBoost were optimized using the firefly 
optimization process. The minority class was oversampled 
using the Adasyn approach to deal with the issue of an 
unbalanced dataset. 

In (Guarda et al., 2023), a thorough review of methods 
that don’t rely on equipment was conducted. The most 

popular technique for detecting NTL is data-oriented/
ML approaches, which often employ electrical numbers, 
this demand, electricity, and mostly power consumption, 
as characteristics. Traditional machine learning methods, 
including ANN, DT, and SVM, or Bayesian classifiers, are used 
in these works. (Odje et al., 2021)Sought to quantify how 
smart metering affected combined technical, commercial, 
and collection fees (ATC&C). It makes use of mathematical 
modeling and historical information from the Nigerian 
Electricity Regulatory Commission in order to predict 
the impact of metering and ATC&C losses.   According 
to the study, for every 1% rise, ATC&C losses decrease by 
0.8% in the metering setup, assuming all other variables 
stay the same. However, factors like system components 
depreciation, energy theft, and meter tampering increase, 
making it necessary for Discos to adopt modern strategies 
and aggressive metering to reduce ATC&C losses. 

Despite improvements in machine learning-based non-
technical loss detection, optimization methods, and smart 
metering technologies, various gaps in research continue 
to exist. The major problem is the lack of labeled datasets, 
which impedes the design and verification of robust models. 
Improved feature engineering methods must be employed 
to uncover meaningful information from consumption data, 
and additional research must be conducted to enhance 
detection of the minority class. Improving detection models’ 
generalizability over changing grid structures, customer 
categories, and geography is essential. Finally, electricity 
thieves must have a real-time system that is capable of 
adapting in real-time and identifying as well as acting to 
counteract stealing in time with changing schemes for 
stealing electricity. These areas require further investigation 
and development to improve the detection of electricity 
theft. These 

Background 

Temporal Convolutional Networks 
One convolutional architecture for encoding time 
information is the Temporal Neural Network (Yu & Koltun, 
2015); (Van Den Oord et al., 2016); (Bai et al., 2018). It comprises 
two often used components: the dilated convolution and 
primary casual convolution network, which together form 
a Convolutional Network with Dilated Temporal. 

Dilated Convolution 
Without raising its parameters, an algorithm may have 
a larger field of receiving via the dilatation (à trous 
convolution) (Yu & Koltun, 2015). In order to accomplish 
expanded convolution “holes” are inserted into the kernel’s 
target sites. Therefore, expanding the receptive field. The 
word “gaps” will denote any technique for enlarging A 
kernel is received via gaps in order to expand the field of 
reception. 
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Dilated Temporal Convolutional Network 
Wave Net demonstrated a Convex Network with Dilated 
Time. (Van Den Oord et al., 2016), is a temporally network 
design that does not handle time steps repeatedly, but 
rather in concurrently. By doing back propagation for each of 
the steps all at once as opposed to a periodic gradient flow, 
this drastically changes the model’s approach to reverse 
propagation across time. To prevent leakage from earlier 
data into later phases, a casual inversion is used (Figure 1). 

A TCN Given a series of inputs x, dilatation d, length i, 
convolution dilated *d, and filter, a layer may be described 
as follows 𝑓

  	 (1) 

A network may dramatically increase the receptive area 
and readily understand time intervals from previous steps 
by using a dilated convolution. In the absence of dilated 
convolutions, temporal convolutional networks (TCNs) 
would have a linear responsive field regarding steps that 
came before.   The field that is responsive for preceding time 
steps (frames) may be computed using dilations. 

		  (2) 

where n is the amount of layers that are hidden, the kernel 
size is denoted by k, and the enlargement factor.   To get 
a quadratic receptivity field, an expansion factor of two is 
frequently used (Bai et al., 2018). 

Temporal Convolutional Networks (TCNs) with dilation 
facilitate the processing of extensive temporal data with 
little computational requirements by using a broad receptive 
field. Temporal Convolutional Networks (TCNs) facilitate 
parallel processing, provide an extensive receptive field, and 
mitigate the issues of disappearing or inflating gradients by 
ensuring that backpropagation is oriented perpendicularly 
to the temporal sequence rather than parallel to it. Dilated 

Temporal Convolutional Networks (TCNs) have shown 
remarkable efficacy in emulating the long-term memory 
capacities of alternative architectures, such as Long Short-
Term Memory (LSTM) networks and Recurrent Neural 
Networks (RNNs), especially in tasks like information 
copying (Bai et al., 2018).   Action separation using the TCN 
has produced cutting-edge results in action recognition. 
(Lea et al., 2017).  Temporal Convolutional Networks (TCNs) 
have been investigated in emotion analysis, yielding 
superior outcomes compared to Long short-term mental 
systems (LSTMs) and recurrent neural networks (RNNs) in 
emotion-related tasks. Temporal Convolutional Networks 
(TCNs) typically have temporal blocks, each consisting of 
two stacked convolutional layers. The objective of layering 
is to first scale the input data to the anticipated dimensions 
before transmitting it via an output-size-designated 
convolutional layer. (Mehta & Yang, 2023). 

Light Gradient Boosting Machine (LightGBM) 
Regression, ranking, and categorization are just a few of the 
machine learning applications that heavily rely on LightGBM, 
a fast, dispersed, powerful gradient-boosting system that 
leverages decision tree approaches (Ke et al., 2017). In order 
to create a strong learning model, this variation of the 
Boosting strategy combines many weak machine learning 
models. Boosting strategies make sure that misclassified 
cases get greater attention in later training iterations by 
lowering the weights of successfully categorized data and 
raising the weights of poorly classified data. In the end, all 
the machine learning algorithms are linearly mixed, and the 
resultant model’s weights are modified in accordance with 
the classifier’s error rate. (Ke et al., 2017). 

The fundamental principle may be expressed using 
equation (): 

 	  	  	 (3) 

where 𝑓(𝑥) is the target value that matches the training set;  
The total amount of base learners is represented by 𝑄.; 𝛼𝑞 
is the weight coefficient of the qth base learner; 𝑥 is the 
learning sample; 𝜃𝑞 is the pupil’s classification variable; and 
𝑇(𝑥, 𝜃𝑞) is training the qth foundation learner (Figure 2). 

After selecting The learning procedure for the Boosting 
method, both the training data and the algorithm’s loss 
formula is translated into a problem in optimisation where 
the goal aims to reduce the loss function (Li et al., 2024). The 

A TCN Given a series of inputs x, dilatation d, length 
i, convolution dilated *d, and filter, a layer may be 
described as follows 𝑓 

Figure 1: Architecture of TCN
 

Figure 2: Architecture of LightGBM 
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objective function is given below: 
arg 		   	 (4) 

mℎ is the actual value of the data, and ℎ is the sample index.; 
( ℎ) is the desired value matching to the hth sample; ( ℎ, 
( ℎ)) is the values of the loss function for the hth sample.; 

and  is the total amount of samples. 
A boosting tree model developed using a gradient- 

descent approach is used in the Gradient Boosting Machine 
(GBM). The chosen loss function consistently diminishes with 
each incorporation of a new sub-model, approaching The 
slope of the variables in equation that has the next highest 
information content (5). 

			   (5) 

where  and  are, respectively, the loss 
function parameters for the jth and (  − 1) th iterations, (

) and −1( ) are what are intended to be the jth and (  − 1) 
th examples, and  is the sample of real goal value.

LightGBM is a kind of GBM that successfully tackles the 
difficulties that GBM has while handling large amounts of 
data. There are two primary aspects of this model. (Ke et 
al., 2017): 
•	 Rather of using a level-wise development methodology, 

the by leaf tree growth method uses a leaf-wise 
development strategy. This approach incurs lower 
computational expenses and effectively mitigates 
overfitting by regulating the lowest amount of 
information in tree height and leaf nodes. 

•	 Algorithm for histogram-based choice trees: LightGBM 
uses a method for histogram-based decision trees. 
During feature selection, it is sufficient to navigate 
and identify the ideal split point depending on each 
individual value of the histogram, which hence reducing 
the cost of computing and storing it.   LightGBM can 
learn and forecast thanks to this functionality with 
greater efficiency while managing extensive datasets 
(Li et al., 2024). 

Methodology 
This research utilized a hybrid approach that combined 
Temporal Convolutional Networks (TCN) and LightGBM 
in order to identify instances of power theft. TCN was 
used to learn deep temporal identify sequential patterns, 
while LightGBM was utilized for effective and accurate 
classif ication. The methodology ensures enhanced 
detection accuracy by combining the benefits of gradient 
booster techniques with deep learning on actual energy 
consumption datasets. 

Dataset Description 
The data set used in this study, including its electricity-
theft-detection data set, was acquired via KaggleHub. It 

consists of time-series electricity usage data collected from 
smart meters, with each instance being labelled as normal 
consumption behaviour (0) or suspicious of electricity theft 
(1). Every row is a set of usage readings over a set time frame 
(i.e., 24 hours or 30 days), enabling the detection system to 
pick up on temporal behaviour characteristic of fraudulent 
activity.  

Data Preprocessing 
Before training the model, the data went through multiple 
pre-processing operations. Missing values, if present, were 
filled up using statistical procedures like mean or forward fill 
mechanisms. The data was then normalized by applying to 
convert every value to within 0 and 1, use min-max levelling, 
which assists in speeding up neural network training. The 
used normalization equation is: 

 	   	  	  	 (6) 

where xmin and xmax are the lowest and highest numbers in 
the attributes column, as well, and x is the original value. 
Following standardization, Test and training sets of the 
dataset were separated. 

Train Test Split 
Following the dataset’s separation into test and training 
sets, the train-test split enables the model to analyse 
characteristics and behaviours from the training set. This 
encompasses the majority of the data; assess how well 
the model can generalize on a dataset that hasn’t been 
seen before, apart from learning; this section provides the 
model with new data, enabling a reliable evaluation of its 
performance and the detection of overfitting; typical splits 
allocate 70–80% of the data is utilized for training, while the 
remaining 20–30% is used for testing. 

Model Building 

Feature extraction 
In order to capture the temporal correlations in electricity 
usage patterns efficiently, a Temporal Convolutional 
Network (TCN) was utilized as the feature extractor. TCNs 
are a 1D convolutional neural network specifically tailored 
for sequence modelling problems. Unlike normal CNNs, 
TCNs use causal convolutions such that the only factors 
influencing predictions at time t are inputs at that time t 
and previous time. Secondly, dilated convolutions are used 
to exponentially grow the receptive field without growing 
computational complexity. One definition of the expanded 
convolution process is:

  	  	  	 (7) 

Where,  
𝑘 is the filter size, 
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Table 1: Algorithm

Algorithm 1 Electric Theft Detection using TCN and LightGBM 

1: Input: Electricity consumption dataset  where 𝑥𝑖 ∈ 𝑅1034, 𝑦𝑖 ∈ {0,1} 
2: Output: A certified model for detecting theft 
3: method for data preprocessing 
4:      Load dataset D from CSV file 
5:      Fill missing values: 𝑥𝑖,𝑗 ← 0 for all missing 𝑥𝑖,𝑗 6: Split data into train/validation/test sets: 
7:           𝐷𝑡𝑟𝑎𝑖𝑛−𝑣𝑎𝑙, 𝐷𝑡𝑒𝑠𝑡 ← split (D, test size = 0.2,stratify = y) 
8:           𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 ← split (𝐷𝑡𝑟𝑎𝑖𝑛−𝑣𝑎𝑙, test size = 0.1875,stratify = 𝑦𝑡𝑟𝑎𝑖𝑛−𝑣𝑎𝑙 
9:      Standardize features: 	  
10: end procedure 
11: procedure TCNModel 
12:      Define TCN architecture: 
13:          h1 = ReLU(BatchNorm(Conv1D(x, 1 → 64)))  
14:          h2 = ReLU(BatchNorm(Conv1D(h1, 64 → 128))) 
15:          h3 = ReLU(BatchNorm(Conv1D(h2, 128 → 128))) 
16:          h4 = ReLU(BatchNorm(Conv1D(h3, 128 → 64))) 
17:          z = GlobalAvgPool(h4) 
18:          f = Linear(z, 64 → 128) 
19:      Initialize with Adam optimizer  (η = 0.001, weight decay = 10−5) 
20:      Loss function: Cross-entropy: 	  
21:      Train with early stopping (patience=7) 
22: end procedure 
23: procedure FeatureExtraction 
24:      Extract features from trained TCN 
25:          𝐹𝑡𝑟𝑎𝑖𝑛  = {𝑇𝐶𝑁(𝑥𝑖)|𝑥𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛} 
26:          𝐹𝑡𝑒𝑠𝑡 = {𝑇𝐶𝑁(𝑥𝑖)|𝑥𝑖 ∈ 𝐷𝑡𝑒𝑠𝑡} 
27: end procedure 
28: procedure LightGBMTraining 
29:      Initialize LightGBM with parameters: 
30:          n estimators = 1000 
31:          learning rate = 0.03 
32:          max depth = 9 
33:          num leaves = 50
34: reg alpha = 0.05
35: reg lambda = 0.05
36: Train on       𝑡𝑟𝑎𝑖𝑛   with early stopping (50 rounds)
37: end procedure
38: procedure Evaluation
39: Predict on test set:  yi = LightGBM (Ftest)
40: Compute metrics:

41: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
TP TN

TP TN FP FN
+

+ + +

42: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
TP

TP FP+
43:  Recall = 

TP
TP FN+

44: F1 – score = 
2    x Precesion x Recall

Precesion Recall+

45: ( )
1

0
 AUC TPR x dx=∫

46: Generate confusion matrix and ROC curve
47: end procedure
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(𝑖) is the filter weight 
𝑑 is the dilation factor 
𝑥 is the input sequence 

For stable training and avoidance of overfitting, the TCN 
employs residual connections, batch normalization, ReLU 
activation, and dropout layers. The TCN’s output is a high-
level representation of features in the input sequence, with 
informative patterns and anomalies reflecting theft (Table 1). 

Classification 
The features extracted are fed into a The Classifier A 
quick gradient boost device called the Light Gradient 
Enhancement Machine (LightGBM) uses a decision tree. 
LightGBM is well-suited for structured/tabular data and 
provides benefits like high-speed training, low memory 
usage, and high accuracy. 

Objective function 
The LightGBM model optimizes a regularized objective 
function that integrates loss and complexity. Provided an 
input feature vector x, LightGBM seeks to train an ensemble 
of trees {𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑀(𝑥)} to minimize the loss function. 

 	 (8) 
Where, 
𝑙 is a loss function that is differentiable.(e.g. binary log-loss), 
𝛺 is a phrase used for normalization to avoid overfitting? 
𝑦 𝑖̂ is the anticipated likelihood of stealing, for example 𝑖. 

Model Evaluation 
A number of categorization metrics derived from the 
matrix of disorientation are used to evaluate the efficacy of 
the model. Assume that True Positives are represented by 
𝑇𝑃, True Negatives by 𝑇𝑁, False Positives by 𝐹𝑃, and False 
Negatives by 𝐹𝑁. 

Accuracy
Accuracy is a crucial indicator for assessing the effectiveness 
of a categorization model by providing a concise summary of 
the algorithm’s functionality regarding accurate predictions. 
It is established using the proportion of accurate predictions 
to the total quantity of input samples. 

 	  	 (9) 

Precision
The precision ratio is the total of both False Positives (FP) 
and True Positives (TP). It demonstrates the quantity of the 
autumn cases that were projected as positive were in fact 
positive. Put another way, a high accuracy score indicates 
a low error rate, which increases the likelihood that the 
algorithm will correctly foresee a class that is favourable. 

 	   	  	 (10) 

Recall
The ratio of TP to the total of TP and TN is known as recall.   
It shows the quantity of actual positive instances that the 
model precise forecast.   A high memory score means that 
the model reduces the number of negative results while 
effectively detecting a significant percentage of positive 
cases. 

 	  	  	  	 (11) 

F1-score
The F1-score is the harmonic average of memory and 
precision.   When a classification task, like the NTL detection 
problem, involves labelling an honest individual as a 
criminal or a victim, there are a number of expenses and 
consequences, it is useful to balance those two metrics. 

  		  (12) 

ROC-AUC Score
This metric evaluates Trade-off between true positive rate 
(TPR) and false positive rate (FPR): 

  		   	 (13) 

Visualizations like The ROC lines and Precision-Recall curves 
show the model’s discriminative capability across different 
thresholds. 

Results and Discussion 

Classification Results 
This Table 2 showed the electricity theft detection model’s 
classification performance metrics on the test dataset by 
each class: ‘No Theft’ (0) and ‘Theft’ (1). It shows an in-depth 
overview of the accuracy of how the model performs 
predicting each class. 

For the ‘No Theft’ (0) class: 
The accuracy on the entire test set is said to be 0.9145 
(91.45%) overall for the model. The precision is 0.92. This 
reflects that among all the cases which the model output 
as ‘No Theft’, 92% are indeed ‘No Theft’. This shows that it 
has this class has an extremely low false positive rate. The 
recall is 1.00. This means that the model accurately marked 
100% of all the true ‘No Theft’ instances in the test set. It 
shows an extremely low false negative rate for this class. 
The F1-score is 0.96. This provides an equilibrium score by 
taking a harmonic average of accuracy and recall. A high 
F1-score suggests good performance for this class. This 
shown in Figure 3. 

Theft (0), theft (1) The ‘Theft’ (1) class: 
The accuracy is the same (0.9145) since it’s a global measure. 
The class-specific accuracy is not represented directly here, 



The Scientific Temper. Vol. 16, No. 8 	  Vasantrao et al. 	 4642

Table 2: Classification No Theft and Theft 

Classes Accuracy Precision Recall F1-score 

No Theft (0) 0.9145 0.92   1.00 0.96 

Theft (1) 0.48 0.04 0.08 0.08 

Figure 3: Classification of No

 
Figure 4: Accuracy Score vs Classification Threshold (Validation Set) 

Figure 5: Confusion Matrix of the Proposed Model 

though. The accuracy for ‘Theft’ is 0.04. This means that 
among all the instances the model classified as ‘Theft’, only 
4% were indeed ‘Theft’. This implies that the ‘Theft’ category 
has a high false positive rate. The recollection for ‘Theft’ is 
0.08. That means that just 8% of the real ‘Theft’ cases in the 
sample set were accurately detected by the model. This 
signifies an extremely high false negative rate for the ‘Theft’ 
class. F1-score of ‘Theft’ is 0.08. This low number corresponds 
to the low precision and recall for this class, showing poor 
performance in picking up actual theft. 

The Figure 4 illustrates the correlation between the 
classification threshold and The overall precision of the 
model used to identify power theft using the validation 
dataset. The x-axis denotes the classification threshold, 
which is the probability value used to differentiate between 
normal power usage and consumption suggestive of 
theft. The level of accuracy is shown on the y-axis as the 
percentage of correctly recognized cases to all occurrences 
in the data collection, as stated. 

Overall, the accuracy of the model is demonstrated to 
be low at extremely low thresholds, presumably because 
of a high false positive rate. As the threshold rises, the 
accuracy tends to improve overall, suggesting an improved 
trade-off between correctly labelling theft and correctly 
labelling normal consumption. The accuracy peaks and then 
either levels off or drops slightly as the threshold increases 
further. The best value for identifying the point of cutting off 
electricity consumption as typical or suggestive of stealing 
is given as 0.39, which implies that a probability value of 
0.39 is the best point of decision for attaining maximum 
overall accuracy. 

The Figure 5 displays how they perform of a trained 
electricity theft detection model when it is used on an 
unseen test data set. A confusion matrix is a 2x2 table whose 

rows contain ground truth labels of electricity consumption 
data and whose columns contain predicted labels. The cell 
at the top-left shows True Negatives (TN), where it has 7718, 
which shows where the model predicted ‘No Theft’ when 
indeed there was no theft. The top-right cell indicates False 

Positives (FP), where there are 34, showing where 
the model falsely predicted ‘Theft’ while the normal 
consumption actually occurred. The bottom left cell 
indicates False Negatives (FN), counted as 691, representing 
erroneous mistakes where the model did not identify 
real occurrences of ‘Theft’ but labelled them as normal 
consumption. The bottom right cell indicates True Positives 
(TP), with a count of 32, representing occurrences in which 
the model identified electricity theft correctly.  

The Figure 6 ROC curve graphically demonstrates the 
balance between the model’s capacity to detect electricity 
theft accurately (True Positive Rate) and its propensity to 
label legitimate consumption as theft inaccurately (False 
Positive Rate) at different thresholds of classification. The 
False Positive Rate (FPR) is shown by the x-axis, which stands 
for the ratio of fake positives to the overall amount of true 
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Figure 6: ROC Curve of TCN and LGBM 

‘No Theft’ cases. The lower the FPR, the lesser the quantity 
of inaccurate ‘Theft’ forecasts for everyday use. The y-axis 
displays the True Positive Rate (TPR), often referred to as 
sensitivity or memory. It is computed by multiplying the 
entire amount of “Theft” occurrences by the number of 
true positives. The greater the TPR, the better the model 
performs in identifying electricity theft correctly. The blue 
curve shows the ROC curve of the TCN+LGBM model. It’s 
a curve plotting the TPR against FPR as the threshold of 
classification varies. Better performance is when there is 
bowing towards the top-left direction because it denotes 
that there would be a larger TPR corresponding to a lesser 
FPR. This ROC curve along with the derived AUC score 
provides a global estimate of how discriminative this model 
is when faced with unknown data. With an AUC of 0.73, 
the TCN+LGBM model outperforms random in identifying 
electrical theft. 

Discussion
The classification results show that the proposed TCN+LGBM 
model did a great job of detecting No Theft (0) with an 
accuracy of 91.45%, a precision of 0.92, a recall of 1.00, and 
an F1-score of 0.96. However, it did a terrible job of detecting 
Theft (1), with a precision of only 0.04, a recall of 0.08, and 
an F1-score of 0.08. This imbalance shows that the model 
is very good at finding genuine consumption, but not so 
good at finding theft situations, which leads to a high false 
negative rate.

 Previous research has shown similar problems with 
finding power theft because of the natural class imbalance 
in consumption statistics. For example, (Nagi et al., 2011) and 
(Singh, A., & Gupta, 2021)both said that thefts are infrequent 

relative to regular consumption, which means that most 
models are skewed against the majority class. (Singh, A., & 
Gupta, 2021) also spoke on how traditional machine learning 
methods like Decision Trees and Random Forests tend to 
overfit the dominating “No Theft” class in Scientific Temper. 
This means that they get a high overall accuracy but don’t do 
a good job of generalizing to less common theft scenarios.

 In contrast, several prior studies found that deep 
learning-based architectures were superior at finding 
thefts. (Dey, S., Ghosh, S., & Pal, 2020) used LSTM models 
that better captured temporal use patterns to get a recall 
of 0.65 for theft detection. (Dey, S., Ghosh, S., & Pal, 2020) 
used SMOTE-based oversampling to fix the imbalance, which 
greatly increased recall rates. The current study’s poorer 
recall compared to earlier research shows that the model’s 
feature representation or imbalance managing procedures 
should be improved even further, maybe by using data 
augmentation or cost-sensitive learning methods.

 This study’s ROC analysis indicates an AUC of 0.73, which 
means it can tell the difference between things rather well. 
This is in line with prior work by (Singh, A., & Gupta, 2021) in 
Scientific Temper, which found an AUC of 0.71 using hybrid 
ensemble models to detect theft in Indian energy boards. 
But unlike their study, where the detection threshold was set, 
our threshold adjustment (which worked best at 0.39) made 
it easier to balance TPR and FPR, even if it didn’t significantly 
increase theft recall.

 Overall, the high accuracy for “No Theft” prediction 
is in line with what other studies have shown, but the low 
accuracy for theft detection shows how important it is to 
include additional theft-specific characteristics and tactics 
for reducing imbalance, as previous research has advised. 
Future study might include ensemble imbalance correction 
approaches (Chawla et al., 2002)or anomaly detection 
frameworks that are intended for classifying unusual events. 
These could help close the gap between high accuracy and 
balanced performance across both classes.

Conclusion 
This study has shown the effectiveness of a hybrid method, 
combining Temporal Convolutional Networks (TCN) and 
Light gradient boost Machine (LightGBM) in smart grid 
systems for identifying power theft. The design of the model 
efficiently utilizes TCNs to extract key temporal features 
from electricity usage data, allowing for the detection of 
intricate patterns characteristic of normal and abnormal 
usage. LightGBM subsequently delivers a solid classification 
model, taking advantage of its accuracy and efficiency in 
handling structured data. The model tested on an actual 
dataset demonstrates a strong ability to classify normal 
consumption patterns with high accuracy, with high The 
‘No Theft’ class’s memory and accuracy. Nonetheless, the 
experiment also calls attention to a major limitation in the 
model to accurately detect electrical theft using low recall 



The Scientific Temper. Vol. 16, No. 8 	  Vasantrao et al. 	 4644

and precision scores for the ‘Theft’ class. The performance 
difference reflects the difficulty with class imbalance and 
the necessity for further model tuning to enhance fraud 
detection. Future research needs to focus on resolving the 
problem of class imbalance by methods like oversampling 
or cost-sensitive learning, and investigating new model 
architectures or ensemble techniques help decrease related 
losses and enhance theft identification. 
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