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Abstract

Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering
economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment,
contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced
Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity
theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid
approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used
in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic
of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify
consumption behaviour correctly as normal or suspicious. A real dataset is used to train and evaluate the suggested model of smart
meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results
present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and
memory in detecting energy theft. Thisemphasizes the necessity of further research and model refinement to enhance its effectiveness
in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.

Keywords: Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light
Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.
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that take place between the places of generation and
end-user consumption is a recurring problem for power
distribution utilities around the world. These losses
undermine sustainability goals and economic development

Introduction

The foundation of contemporary economic growth and
societal advancement is the electrical power sector, with
access to affordable and dependable electricity being

essential for commercial activity, industrial expansion,
and quality of life. However, the substantial amount of
Aggregate Technical and Commercial (AT&C) damages
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initiatives by contributing to increased carbon emissions
through additional generation requirements, in addition
to representing significant financial leakage for utilities,
estimated at over $200 billion annually worldwide. The two
distinct elements that comprise AT&C losses, both non-
technical (NTLs) and technical (TLs), are most prevalent in
the distribution sector. (Navani et al.,, 2012).

NTLs, sometimes referred to as Energy molecules that
are supplied and utilized, are considered economic losses,
but for which the electric power company does not issue a
charge. An NTL can be accounted for in four different ways
(Smith, 2004).

By manipulating energy meters to record lower
consumption than is really utilized, fraud entails misleading
an electric power company. A bypass is a covert way to
connect to the load from the power grid without going via
the energy meter. Another prevalent practice is bribery,
and both customers and personnel may be corrupt. When
aresidential customer moves out, a commercial customer’s

Published: 30/08/2025
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business files for bankruptcy, or a meter breaks, they may
neglect their energy bill. This is known as non-payment.

The worldwide issue of NTL impacts underdeveloped,
emerging, and even fully developed nations. The study of
Northeast Group LLC (LLC, 2017) claims that 96 billion USD
has been lost every year worldwide. An estimated USD 6
billion was lost annually by power utilities in the United
States in 2009 (McDaniel & McLaughlin, 2009). Among the
most powerful companies in Canada, BC Hydro stated that
the yearly loss from electricity fraud in 2011 was over CA$100
million (Hydro, 2010).

The situation tends to get worse in developing and
impoverished nations. An estimated USD 58.7 billion is lost
annually by the major rising nations (de Souza Savian et
al., 2021). In 2022, NTLs accounted for 14.6% of all losses on
the low-voltage power grid in Brazil. NTLs accounted for
6.3% of the overall loss in the Brazilian system as a whole
(low, medium, and high voltage). In several Latin American
nations, energy firms, users, and even those who haven't
engaged in any sort of fraud share some of the financial
losses brought on by NTL (de Oliveira Ventura et al., 2020).

Clandestine illegal connections can have a detrimental
impact on Power Quality (PQ) since the power flowing
through the system is not what is intended. Disturbances,
including voltage swings, over voltages, under voltages, and
harmonics, among other issues, could arise in this situation
(Olaoluwa, 2017). This may lead to widespread blackouts
or even fire concerns. Since the advent of smart grids (SG),
advanced metering infrastructure (AMI) technologies
have been created to make it easier for an energy meter
and the electrical source to communicate. This reciprocal
relationship, however, invariably results in cybersecurity
issues, including data leaks and theft/alteration of customer
electrical data (Wang & Lu, 2013) (El Mrabet et al., 2018).
Stated differently, it is possible to hack and reprogram the
AMI in order to perpetrate fraud, including electricity theft
(Morgoev et al., 2023). The power provider may lose even
more money as a result of new energy theft techniques
that have been created to target AMI with the standard
tampering that was used to commit fraud.

Therefore, to further halt the growth of NTL, new
methods or systems for detecting theft of electricity
must be developed. Given the significant financial losses,
decrease in PQ, and new methods of power theft using AMI.
Utilizing the massive volume of data delivered and stored
in the SG, machine learning (ML), and deep learning (DL)
algorithms may be developed to effectively identify the type
and timing of energy fraud. Machine learning algorithms
have shown promise in detecting abnormal consumption
patterns indicative of electricity theft or meter tampering.
Supervised learning approaches like gradient boosting
techniques, support vector machines (SVM) and random
forests demonstrated excellent accuracy in classifying

legitimate versus fraudulent consumption patterns when
trained on labelled historical data (Hashim et al., 2024).
Unsupervised learning techniques, such as clustering
algorithms and anomaly detection methods, can identify
consumer segments with similar consumption patterns and
flag outliers. Techniques for deep learning, include temporal
convolutional networks (TCNs), recurrent neural networks
(RNNs) and long short-term memory networks (LSTMs), can
simulate complex sequential patterns in electricity usage,
enabling detection of subtle anomalies (Ahmad et al., 2022).

Al techniques also support the prioritization of
investigation resources, allowing utilities to optimize
inspection schedules and adapt to evolving theft techniques.
The combination of Al and smart meters offers more
chances for technological loss reduction through improved
system monitoring and optimization (Li et al., 2019).
Neural network-based load forecasting, distribution state
estimation algorithms, and voltage and reactive power
optimization algorithms can minimize technical losses
through improved control of grid parameters. However,
implementing Al-driven loss reduction programs presents
practical challenges, such as data quality issues, privacy
concerns, transparency and explainability challenges, and
regulatory frameworks. Emerging technologies, such as
edge computing architectures, blockchain-based metering
systems, and federated learning approaches, promise to
further enhance the capabilities of Al-driven loss reduction
systems. This study aims to develop a hybrid methodology
to identify the kind of power theft in distributed energy
networks.

Related work

In Ramos et al. (2011), in order to train the Optimum Path
Forest classifier (OPF), data from commercial and industrial
users were used. Other electrical measurements, such as
installed power (Pinst), power factor (PF), reactive utilization
of energy (kVArh), among others, were employed in place
of energy consumption (kWh). The classifier’s accuracy was
increased by reducing the problem’s dimensionality and
extracting significant features using the Harmony search
(HS) approach. Additionally, HS outperformed principal
component analysis (PCA), another conventional feature
extraction method.

Having a labelled dataset that shows if a customer has
committed fraud is uncommon. In light of this, as well as
using AMI data, reference. (Jokar et al., 2015) Suggested
six formulas that employ data from trustworthy users to
produce harmful samples. The data produced by these
equations and previous Data is used to create a multiple-
class SVM for every customer. A transformer meter’s
measurement of a neighbourhood’s overall energy usage
and the amount of energy supplied by intelligent meters
are compared in an energy theft detection. Customers in
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that area are marked as suspects if an NTL is found, and
the classifier determines whether or not any of them are
engaging in fraud based on news samples from each of
these customers.

(Zanetti et al., 2017) Used a similar technique, which
also needs information from the low-voltage grid (LVG)
transformer’s meters and presented two more equations
to produce malicious samples. It compares the reports
from the domestic smart meters and the LVG meter using a
“detector.” Then, people with unusual consumption habits
are identified using a state device method that creates three
square states: typical (G1), suspect (G2), or abnormal (G3).

(Dey, S., Ghosh, S., & Pal, 2020) used an actual classified
dataset with intervals with daily readings to build a network
of neurons with two distinct components. To capture
the global characteristics of 1D data (electricity usage
time series), the first, referred to as the broad network, is
composed of completely linked layers. The second, called
the Deep Convolutional Neural Network (CNN), determines
if energy theft is non-periodic and whether a regular
user is periodic by using 2-D data (weekly measurements
are created from the 1-D data). Ultimately, by mixing the
results, an activated sigmoid is produced of both networks
to determine whether or not a customer has engaged in
fraud. A number of pre-processing methods were used to
enhance the model’s functionality, including interpolation
using linearity to impute values that are absent and the
empirical principle, which finds outliers in the data set by
calculating two deviations of the mean value.

In (Messinis et al., 2019), a novel equation for modelling
energy theft is put forth. It considers the linear growth
of an assault as time passes, meaning that power usage
declines gradually as opposed to suddenly. The detection
of NTLs is then carried out using a combination of electrical
system efficiency, Support Vector Machines (SVM), and volt
sensitivity analysis. The result is based on a few equations,
as well as this newly suggested equation.

Itis commonly recognized that there are more instances
of trustworthy users than malicious ones in labeled energy
theft datasets. As a result, these datasets are regarded
as imbalanced and may present learning challenges for
machine learning algorithms (Domingues et al., 2018).
With the same dataset as (Dey, S., Ghosh, S., & Pal, 2020)
the authors of (Khan et al., 2020) extracted features using
a VGG-16 design, which has several mixing and layers for
convolution, and performed the final classification using
an XGBoost (Decision Tree-based method). The high-level
parameters of XGBoost were optimized using the firefly
optimization process. The minority class was oversampled
using the Adasyn approach to deal with the issue of an
unbalanced dataset.

In (Guarda et al., 2023), a thorough review of methods
that don't rely on equipment was conducted. The most

popular technique for detecting NTL is data-oriented/
ML approaches, which often employ electrical numbers,
this demand, electricity, and mostly power consumption,
as characteristics. Traditional machine learning methods,
including ANN, DT, and SVM, or Bayesian classifiers, are used
in these works. (Odje et al., 2021)Sought to quantify how
smart metering affected combined technical, commercial,
and collection fees (ATC&C). It makes use of mathematical
modeling and historical information from the Nigerian
Electricity Regulatory Commission in order to predict
the impact of metering and ATC&C losses. According
to the study, for every 1% rise, ATC&C losses decrease by
0.8% in the metering setup, assuming all other variables
stay the same. However, factors like system components
depreciation, energy theft, and meter tampering increase,
making it necessary for Discos to adopt modern strategies
and aggressive metering to reduce ATC&C losses.

Despite improvements in machine learning-based non-
technical loss detection, optimization methods, and smart
metering technologies, various gaps in research continue
to exist. The major problem is the lack of labeled datasets,
which impedes the design and verification of robust models.
Improved feature engineering methods must be employed
to uncover meaningful information from consumption data,
and additional research must be conducted to enhance
detection of the minority class. Improving detection models’
generalizability over changing grid structures, customer
categories, and geography is essential. Finally, electricity
thieves must have a real-time system that is capable of
adapting in real-time and identifying as well as acting to
counteract stealing in time with changing schemes for
stealing electricity. These areas require further investigation
and development to improve the detection of electricity
theft. These

Background

Temporal Convolutional Networks

One convolutional architecture for encoding time
information is the Temporal Neural Network (Yu & Koltun,
2015); (Van Den Oord et al., 2016); (Bai et al., 2018). It comprises
two often used components: the dilated convolution and
primary casual convolution network, which together form
a Convolutional Network with Dilated Temporal.

Dilated Convolution

Without raising its parameters, an algorithm may have
a larger field of receiving via the dilatation (a trous
convolution) (Yu & Koltun, 2015). In order to accomplish
expanded convolution “holes” are inserted into the kernel’s
target sites. Therefore, expanding the receptive field. The
word “gaps” will denote any technique for enlarging A
kernel is received via gaps in order to expand the field of
reception.
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Dilated Temporal Convolutional Network
Wave Net demonstrated a Convex Network with Dilated
Time. (Van Den Oord et al., 2016), is a temporally network
design that does not handle time steps repeatedly, but
rather in concurrently. By doing back propagation for each of
the steps all at once as opposed to a periodic gradient flow,
this drastically changes the model’s approach to reverse
propagation across time. To prevent leakage from earlier
data into later phases, a casual inversion is used (Figure 1).
A TCN Given a series of inputs x, dilatation d, length i,
convolution dilated *d, and filter, a layer may be described
as follows f

F(x) = (exq O = o f @) - Xsgric O

A network may dramatically increase the receptive area
and readily understand time intervals from previous steps
by using a dilated convolution. In the absence of dilated
convolutions, temporal convolutional networks (TCNs)
would have a linear responsive field regarding steps that
came before. The field that is responsive for preceding time
steps (frames) may be computed using dilations.

RF(n,d,k) =1+ Y, d'(k - 1) )

where n is the amount of layers that are hidden, the kernel
size is denoted by k, and the enlargement factor. To get
a quadratic receptivity field, an expansion factor of two is
frequently used (Bai et al., 2018).

Temporal Convolutional Networks (TCNs) with dilation
facilitate the processing of extensive temporal data with
little computational requirements by using a broad receptive
field. Temporal Convolutional Networks (TCNs) facilitate
parallel processing, provide an extensive receptive field, and
mitigate the issues of disappearing or inflating gradients by
ensuring that backpropagation is oriented perpendicularly
to the temporal sequence rather than parallel to it. Dilated

Yo Yyn Vg0 V=9 Ven Ver o Vi V-5 Vy-a Vin o Yyp Y-t Yy

Ny Xypep Xepm10 X9 Xyeg Xy K6 Xyos Tt X Yy Ty-t Xy

A TCN Given a series of inputs x, dilatation d, length
i, convolution dilated *,, and filter, a layer may be
described as follows f

Figure 1: Architecture of TCN

Temporal Convolutional Networks (TCNs) have shown
remarkable efficacy in emulating the long-term memory
capacities of alternative architectures, such as Long Short-
Term Memory (LSTM) networks and Recurrent Neural
Networks (RNNs), especially in tasks like information
copying (Bai et al., 2018). Action separation using the TCN
has produced cutting-edge results in action recognition.
(Lea et al., 2017). Temporal Convolutional Networks (TCNs)
have been investigated in emotion analysis, yielding
superior outcomes compared to Long short-term mental
systems (LSTMs) and recurrent neural networks (RNNs) in
emotion-related tasks. Temporal Convolutional Networks
(TCNs) typically have temporal blocks, each consisting of
two stacked convolutional layers. The objective of layering
is to first scale the input data to the anticipated dimensions
before transmitting it via an output-size-designated
convolutional layer. (Mehta & Yang, 2023).

Light Gradient Boosting Machine (LightGBM)
Regression, ranking, and categorization are just a few of the
machine learning applications that heavily rely on LightGBM,
a fast, dispersed, powerful gradient-boosting system that
leverages decision tree approaches (Ke et al., 2017). In order
to create a strong learning model, this variation of the
Boosting strategy combines many weak machine learning
models. Boosting strategies make sure that misclassified
cases get greater attention in later training iterations by
lowering the weights of successfully categorized data and
raising the weights of poorly classified data. In the end, all
the machine learning algorithms are linearly mixed, and the
resultant model’s weights are modified in accordance with
the classifier’s error rate. (Ke et al., 2017).

The fundamental principle may be expressed using
equation ():

fG) = 3o agT(x6,) G

where f(x) is the target value that matches the training set;
The total amount of base learners is represented by Q.; ag
is the weight coefficient of the gth base learner; x is the
learning sample; 8q is the pupil’s classification variable; and
T(x, 6q) is training the qth foundation learner (Figure 2).
After selecting The learning procedure for the Boosting
method, both the training data and the algorithm’s loss
formula is translated into a problem in optimisation where
the goal aims to reduce the loss function (Li et al., 2024). The

DATASET .
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Figure 2: Architecture of LightGBM
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objective fulglction is given below:
argmin Y. L(yp f(x)) 4)

mh is the actual value of the data, and h is the sample index.;
T(xh) is the desired value matching to the ht"sample; L(Vh,

(xh)) is the values of the loss function for the hth sample,;
and H is the total amount of samples.

A boosting tree model developed using a gradient-
descent approach is used in the Gradient Boosting Machine
(GBM). The chosen loss function consistently diminishes with
each incorporation of a new sub-model, approaching The
slope of the variables in equation that has the next highest
information content (5).

L(F;(x),Y) < L(Fi_1(x),Y) )

where L(F;(x),Y)and L(Fj-1(x),Y) are, respectively, the loss

function parameters for the jth and (J — 1) th iterations, Fi

x)and Fj_(x) are what are intended to be the jthand (j - 1)

th examples, and Y is the sample of real goal value.
LightGBM is a kind of GBM that successfully tackles the

difficulties that GBM has while handling large amounts of
data. There are two primary aspects of this model. (Ke et

al., 2017):

« Rather of using alevel-wise development methodology,
the by leaf tree growth method uses a leaf-wise
development strategy. This approach incurs lower
computational expenses and effectively mitigates
overfitting by regulating the lowest amount of
information in tree height and leaf nodes.

Algorithm for histogram-based choice trees: LightGBM

uses a method for histogram-based decision trees.
During feature selection, it is sufficient to navigate
and identify the ideal split point depending on each
individual value of the histogram, which hence reducing
the cost of computing and storing it. LightGBM can
learn and forecast thanks to this functionality with
greater efficiency while managing extensive datasets
(Lietal., 2024).

Methodology

This research utilized a hybrid approach that combined
Temporal Convolutional Networks (TCN) and LightGBM
in order to identify instances of power theft. TCN was
used to learn deep temporal identify sequential patterns,
while LightGBM was utilized for effective and accurate
classification. The methodology ensures enhanced
detection accuracy by combining the benefits of gradient
booster techniques with deep learning on actual energy
consumption datasets.

Dataset Description

The data set used in this study, including its electricity-
theft-detection data set, was acquired via KaggleHub. It

consists of time-series electricity usage data collected from
smart meters, with each instance being labelled as normal
consumption behaviour (0) or suspicious of electricity theft
(1). Every row is a set of usage readings over a set time frame
(i.e., 24 hours or 30 days), enabling the detection system to
pick up on temporal behaviour characteristic of fraudulent
activity.

Data Preprocessing
Before training the model, the data went through multiple
pre-processing operations. Missing values, if present, were
filled up using statistical procedures like mean or forward fill
mechanisms. The data was then normalized by applying to
convert every value to within 0 and 1, use min-max levelling,
which assists in speeding up neural network training. The
used normalization equation is:

_ X—Xmin
Xnorm = Xmax~Xmin ©
where x . and x__ are the lowest and highest numbers in
the attributes column, as well, and x is the original value.
Following standardization, Test and training sets of the
dataset were separated.

Train Test Split

Following the dataset’s separation into test and training
sets, the train-test split enables the model to analyse
characteristics and behaviours from the training set. This
encompasses the majority of the data; assess how well
the model can generalize on a dataset that hasn’t been
seen before, apart from learning; this section provides the
model with new data, enabling a reliable evaluation of its
performance and the detection of overfitting; typical splits
allocate 70-80% of the data is utilized for training, while the
remaining 20-30% is used for testing.

Model Building

Feature extraction

In order to capture the temporal correlations in electricity
usage patterns efficiently, a Temporal Convolutional
Network (TCN) was utilized as the feature extractor. TCNs
are a 1D convolutional neural network specifically tailored
for sequence modelling problems. Unlike normal CNNs,
TCNs use causal convolutions such that the only factors
influencing predictions at time t are inputs at that time t
and previous time. Secondly, dilated convolutions are used
to exponentially grow the receptive field without growing
computational complexity. One definition of the expanded
convolution process is:

ORI [ORET ”

Where,
k is the filter size,
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Table 1: Algorithm

Algorithm 1 Electric Theft Detection using TCN and LightGBM

1: Input: Electricity consumption dataset D = {(x;, y;)}}-, where x, € R'%*, y € {0,1}
2: Output: A certified model for detecting theft
3: method for data preprocessing

4: Load dataset D from CSV file

5:  Fill missing values: x,<0 for all missing x,; 6 Split data into train/validation/test sets:
7: rain—var Diese & SPIit (D, test size = 0.2,stratify =)

8 aiw Do € SPIIL(D, . testsize=0.1875stratify=y

9:  Standardize features: X' = —fuen

10: end procedure e

11: procedure TCNModel

12:  Define TCN architecture:

13: h1 = ReLU(BatchNorm(Conv1D(x, 1 — 64)))

14: h2 = ReLU(BatchNorm(Conv1D(h1, 64 — 128)))

15: h3 = ReLU(BatchNorm(Conv1D(h2, 128 — 128)))

16: h4 = ReLU(BatchNorm(Conv1D(h3, 128 — 64)))

17: z = GlobalAvgPool(h4)

18: f=Linear(z, 64 — 128)

19: Initialize with Adam optimizer (n =0.001, weight decay = 10)
20: Loss function: Cross-entropy: L = —% N yi log(p) + (1 — y)log(1 —py)
21: Train with early stopping (patience=7)

22: end procedure

23: procedure FeatureExtraction

24:  Extract features from trained TCN

25: F_.={TCN(x)|x €D, }

26: F,,={TCN(x)|x.€D
27:end procedure

28: procedure LightGBMTraining

29: Initialize LightGBM with parameters:
30: n estimators = 1000

train

}

test

31: learning rate = 0.03
32 max depth =9
33: num leaves =50

34:reg alpha=0.05

35:reg lambda = 0.05

36:Trainon | with early stopping (50 rounds)
37: end procedure

38: procedure Evaluation

39: Predict on test set: y = LightGBM (Ftest)

40: Compute metrics:

TP+TN

TP+TN + FP+FN
P

TP+ FP

41: Accuracy =
42: Precision =

43: Recall = ———
A= TP EN

4-F1 2 x Precesion x Recall
44: —score= Precesion + Recall

45: AUC =[ TPR(x)dx

46: Generate confusion matrix and ROC curve
47: end procedure
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(i) is the filter weight
d is the dilation factor
x is the input sequence

For stable training and avoidance of overfitting, the TCN
employs residual connections, batch normalization, ReLU
activation, and dropout layers. The TCN's output is a high-
level representation of features in the input sequence, with
informative patterns and anomalies reflecting theft (Table 1).

Classification

The features extracted are fed into a The Classifier A
quick gradient boost device called the Light Gradient
Enhancement Machine (LightGBM) uses a decision tree.
LightGBM is well-suited for structured/tabular data and
provides benefits like high-speed training, low memory
usage, and high accuracy.

Objective function

The LightGBM model optimizes a regularized objective
function that integrates loss and complexity. Provided an
input feature vector x, LightGBM seeks to train an ensemble
oftrees {T,(x), T,(x), ..., T, (x)} to minimize the loss function.

A N “ M
Ly, 9) = 2, l0u9)+ 2, -, 2(T) @)
Where,
lis aloss function that is differentiable.(e.g. binary log-loss),
£ is a phrase used for normalization to avoid overfitting?
¥, is the anticipated likelihood of stealing, for example i.

Model Evaluation

A number of categorization metrics derived from the
matrix of disorientation are used to evaluate the efficacy of
the model. Assume that True Positives are represented by
TP, True Negatives by TN, False Positives by FP, and False
Negatives by FN.

Accuracy

Accuracy is a crucial indicator for assessing the effectiveness
of a categorization model by providing a concise summary of
the algorithm’s functionality regarding accurate predictions.
Itis established using the proportion of accurate predictions
to the total quantity of input samples.

TP+TN

Accuracy = TP+TN+FP+FN ©)

Precision

The precision ratio is the total of both False Positives (FP)
and True Positives (TP). It demonstrates the quantity of the
autumn cases that were projected as positive were in fact
positive. Put another way, a high accuracy score indicates
a low error rate, which increases the likelihood that the
algorithm will correctly foresee a class that is favourable.

TP (10)
TP+FP

Precision =

Recall

The ratio of TP to the total of TP and TN is known as recall.
It shows the quantity of actual positive instances that the
model precise forecast. A high memory score means that
the model reduces the number of negative results while
effectively detecting a significant percentage of positive
cases.

TP
TP+FN

Recall = (1m

F1-score

The F1-score is the harmonic average of memory and

precision. When a classification task, like the NTL detection

problem, involves labelling an honest individual as a

criminal or a victim, there are a number of expenses and

consequences, it is useful to balance those two metrics.
2XPrecisionxRecall

F1 — score = — (12)
Precision+Recall

ROC-AUC Score
This metric evaluates Trade-off between true positive rate
(TPR) and false positive rate (FPR):

AUC = [ TPR(x)dx (13)

Visualizations like The ROC lines and Precision-Recall curves
show the model’s discriminative capability across different
thresholds.

Results and Discussion

Classification Results

This Table 2 showed the electricity theft detection model’s
classification performance metrics on the test dataset by
each class: ‘No Theft’ (0) and ‘Theft’ (1). It shows an in-depth
overview of the accuracy of how the model performs
predicting each class.

For the ‘No Theft’ (0) class:

The accuracy on the entire test set is said to be 0.9145
(91.45%) overall for the model. The precision is 0.92. This
reflects that among all the cases which the model output
as ‘No Theft’, 92% are indeed ‘No Theft’. This shows that it
has this class has an extremely low false positive rate. The
recall is 1.00. This means that the model accurately marked
100% of all the true ‘No Theft’ instances in the test set. It
shows an extremely low false negative rate for this class.
The F1-score is 0.96. This provides an equilibrium score by
taking a harmonic average of accuracy and recall. A high
F1-score suggests good performance for this class. This
shown in Figure 3.

Theft (0), theft (1) The ‘Theft’ (1) class:
The accuracy is the same (0.9145) since it's a global measure.
The class-specific accuracy is not represented directly here,
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Table 2: Classification No Theft and Theft

Classes Accuracy Precision Recall F1-score
No Theft (0) 0.9145 0.92 1.00 0.96
Theft (1) 0.48 0.04 0.08 0.08
1.2
1
0.8
0.6
0.4
0.2
0 —
No Theft (0) Theft (1)

M Accuracy M Precision Recall ¥ Fil-score

Figure 3: Classification of No

though. The accuracy for ‘Theft’ is 0.04. This means that
among all the instances the model classified as ‘Theft’, only
4% were indeed ‘Theft’. This implies that the ‘Theft’ category
has a high false positive rate. The recollection for ‘Theft’ is
0.08. That means that just 8% of the real ‘Theft’ cases in the
sample set were accurately detected by the model. This
signifies an extremely high false negative rate for the ‘Theft’
class. F1-score of ‘Theft’is 0.08. This low number corresponds
to the low precision and recall for this class, showing poor
performance in picking up actual theft.

The Figure 4 illustrates the correlation between the
classification threshold and The overall precision of the
model used to identify power theft using the validation
dataset. The x-axis denotes the classification threshold,
which is the probability value used to differentiate between
normal power usage and consumption suggestive of
theft. The level of accuracy is shown on the y-axis as the
percentage of correctly recognized cases to all occurrences
in the data collection, as stated.

Overall, the accuracy of the model is demonstrated to
be low at extremely low thresholds, presumably because
of a high false positive rate. As the threshold rises, the
accuracy tends to improve overall, suggesting an improved
trade-off between correctly labelling theft and correctly
labelling normal consumption. The accuracy peaks and then
either levels off or drops slightly as the threshold increases
further. The best value for identifying the point of cutting off
electricity consumption as typical or suggestive of stealing
is given as 0.39, which implies that a probability value of
0.39 is the best point of decision for attaining maximum
overall accuracy.

The Figure 5 displays how they perform of a trained
electricity theft detection model when it is used on an
unseen test data set. A confusion matrix is a 2x2 table whose

Accuracy Score vs. Classification Threshold (Validation Set)

0.9

08

o
b

Accuracy Score

o
>
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04 === Threshold for Max Accuracy (0.39)

02 04 0.6 08
Threshold

Figure 4: Accuracy Score vs Classification Threshold (Validation Set)
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Figure 5: Confusion Matrix of the Proposed Model

rows contain ground truth labels of electricity consumption
data and whose columns contain predicted labels. The cell
at the top-left shows True Negatives (TN), where it has 7718,
which shows where the model predicted ‘No Theft’ when
indeed there was no theft. The top-right cell indicates False

Positives (FP), where there are 34, showing where
the model falsely predicted ‘Theft’ while the normal
consumption actually occurred. The bottom left cell
indicates False Negatives (FN), counted as 691, representing
erroneous mistakes where the model did not identify
real occurrences of ‘Theft’ but labelled them as normal
consumption. The bottom right cell indicates True Positives
(TP), with a count of 32, representing occurrences in which
the model identified electricity theft correctly.

The Figure 6 ROC curve graphically demonstrates the
balance between the model’s capacity to detect electricity
theft accurately (True Positive Rate) and its propensity to
label legitimate consumption as theft inaccurately (False
Positive Rate) at different thresholds of classification. The
False Positive Rate (FPR) is shown by the x-axis, which stands
for the ratio of fake positives to the overall amount of true
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Test Set Receiver Operating Characteristic (ROC) Curve
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Figure 6: ROC Curve of TCN and LGBM

‘No Theft’ cases. The lower the FPR, the lesser the quantity
of inaccurate ‘Theft’ forecasts for everyday use. The y-axis
displays the True Positive Rate (TPR), often referred to as
sensitivity or memory. It is computed by multiplying the
entire amount of “Theft” occurrences by the number of
true positives. The greater the TPR, the better the model
performs in identifying electricity theft correctly. The blue
curve shows the ROC curve of the TCN+LGBM model. It's
a curve plotting the TPR against FPR as the threshold of
classification varies. Better performance is when there is
bowing towards the top-left direction because it denotes
that there would be a larger TPR corresponding to a lesser
FPR. This ROC curve along with the derived AUC score
provides a global estimate of how discriminative this model
is when faced with unknown data. With an AUC of 0.73,
the TCN+LGBM model outperforms random in identifying
electrical theft.

Discussion

The classification results show that the proposed TCN+LGBM
model did a great job of detecting No Theft (0) with an
accuracy of 91.45%, a precision of 0.92, a recall of 1.00, and
an F1-score of 0.96. However, it did a terrible job of detecting
Theft (1), with a precision of only 0.04, a recall of 0.08, and
an F1-score of 0.08. This imbalance shows that the model
is very good at finding genuine consumption, but not so
good at finding theft situations, which leads to a high false
negative rate.

Previous research has shown similar problems with
finding power theft because of the natural class imbalance
in consumption statistics. For example, (Nagi et al., 2011) and
(Singh, A., & Gupta, 2021)both said that thefts are infrequent

relative to regular consumption, which means that most
models are skewed against the majority class. (Singh, A., &
Gupta, 2021) also spoke on how traditional machine learning
methods like Decision Trees and Random Forests tend to
overfit the dominating “No Theft” class in Scientific Temper.
This means that they get a high overall accuracy but don't do
a good job of generalizing to less common theft scenarios.

In contrast, several prior studies found that deep
learning-based architectures were superior at finding
thefts. (Dey, S., Ghosh, S., & Pal, 2020) used LSTM models
that better captured temporal use patterns to get a recall
of 0.65 for theft detection. (Dey, S., Ghosh, S., & Pal, 2020)
used SMOTE-based oversampling to fix the imbalance, which
greatly increased recall rates. The current study’s poorer
recall compared to earlier research shows that the model'’s
feature representation orimbalance managing procedures
should be improved even further, maybe by using data
augmentation or cost-sensitive learning methods.

This study’s ROC analysis indicates an AUC of 0.73, which
means it can tell the difference between things rather well.
This is in line with prior work by (Singh, A., & Gupta, 2021) in
Scientific Temper, which found an AUC of 0.71 using hybrid
ensemble models to detect theft in Indian energy boards.
But unlike their study, where the detection threshold was set,
our threshold adjustment (which worked best at 0.39) made
it easier to balance TPRand FPR, even if it didn't significantly
increase theft recall.

Overall, the high accuracy for “No Theft” prediction
is in line with what other studies have shown, but the low
accuracy for theft detection shows how important it is to
include additional theft-specific characteristics and tactics
for reducing imbalance, as previous research has advised.
Future study mightinclude ensemble imbalance correction
approaches (Chawla et al., 2002)or anomaly detection
frameworks that are intended for classifying unusual events.
These could help close the gap between high accuracy and
balanced performance across both classes.

Conclusion

This study has shown the effectiveness of a hybrid method,
combining Temporal Convolutional Networks (TCN) and
Light gradient boost Machine (LightGBM) in smart grid
systems for identifying power theft. The design of the model
efficiently utilizes TCNs to extract key temporal features
from electricity usage data, allowing for the detection of
intricate patterns characteristic of normal and abnormal
usage. LightGBM subsequently delivers a solid classification
model, taking advantage of its accuracy and efficiency in
handling structured data. The model tested on an actual
dataset demonstrates a strong ability to classify normal
consumption patterns with high accuracy, with high The
‘No Theft’ class's memory and accuracy. Nonetheless, the
experiment also calls attention to a major limitation in the
model to accurately detect electrical theft using low recall
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and precision scores for the ‘Theft’ class. The performance
difference reflects the difficulty with class imbalance and
the necessity for further model tuning to enhance fraud
detection. Future research needs to focus on resolving the
problem of class imbalance by methods like oversampling
or cost-sensitive learning, and investigating new model
architectures or ensemble techniques help decrease related
losses and enhance theft identification.
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