AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.06Keywords:
Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify consumption behaviour correctly as normal or suspicious. An real dataset is used to train and evaluate the suggested model of smart meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and memory in detecting energy theft. This emphasizes the necessity of further research and model refinement to enhance its effectiveness in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.Abstract
How to Cite
Downloads
Similar Articles
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper

