AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.02Keywords:
Congestion-aware Routing, Deep Reinforcement Learning (DRL), Energy Efficiency, Internet of Things (IoT), Routing Protocols, Shrike Optimization Algorithm (SOA).Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces a novel hybrid routing framework, DRL-SOA, which fuses Deep Reinforcement Learning (DRL) with the Shrike Optimization Algorithm (SOA) to enable real-time, congestion-aware, and energy-efficient routing in IoT environments. The DRL component incrementally learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan, reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation IoT systems.Abstract
How to Cite
Downloads
Similar Articles
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nandini S, Nagabushanam M, Nandeesh G S, Sundaresha M P, Pramodkumar S, Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Manan Pathak, Dishang Trivedi Trivedi, Field-effect limits and design parameters for hybrid HVDC – HVAC transmission line corridors , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper

