AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.02Keywords:
Congestion-aware Routing, Deep Reinforcement Learning (DRL), Energy Efficiency, Internet of Things (IoT), Routing Protocols, Shrike Optimization Algorithm (SOA).Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces a novel hybrid routing framework, DRL-SOA, which fuses Deep Reinforcement Learning (DRL) with the Shrike Optimization Algorithm (SOA) to enable real-time, congestion-aware, and energy-efficient routing in IoT environments. The DRL component incrementally learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan, reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation IoT systems.Abstract
How to Cite
Downloads
Similar Articles
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper

