AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.02Keywords:
Congestion-aware Routing, Deep Reinforcement Learning (DRL), Energy Efficiency, Internet of Things (IoT), Routing Protocols, Shrike Optimization Algorithm (SOA).Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces a novel hybrid routing framework, DRL-SOA, which fuses Deep Reinforcement Learning (DRL) with the Shrike Optimization Algorithm (SOA) to enable real-time, congestion-aware, and energy-efficient routing in IoT environments. The DRL component incrementally learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan, reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation IoT systems.Abstract
How to Cite
Downloads
Similar Articles
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper

