
Abstract
The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of 
handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols 
often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces 
a novel hybrid routing framework, DRL-SOA, which fuses deep reinforcement learning (DRL) with the shrike optimization algorithm 
(SOA) to enable real-time, congestion-aware, and energy-efficient routing in IoT environments. The DRL component incrementally 
learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by 
identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-
parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity 
to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing 
approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan, 
reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility 
rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation IoT systems.
Keywords: Congestion-aware routing, Deep reinforcement learning, Energy efficiency, Internet of Things, Routing protocols, Shrike 
optimization algorithm.
关键词： 拥塞感知路由、深度强化学习、能源效率、物联网、路由协议、Shrike优化算法。
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Introduction 
The rapid expansion of the Internet of Things (IoT) has led 
to an unprecedented growth in the number of connected 

devices, requiring efficient, reliable, and energy-aware 
communication protocols. IoT networks often consist of 
numerous resource-constrained sensor nodes that operate 
in dynamic and heterogeneous environments. These 
networks face significant challenges such as limited energy 
resources, frequent topology changes due to node mobility, 
congestion, and the need for low-latency data transmission.

Traditional routing protocols designed for static or low-
mobility wireless sensor networks are often inadequate 
for modern IoT applications, especially those requiring 
high mobility support (e.g., vehicular networks, wearable 
healthcare devices). Consequently, intelligent and adaptive 
routing strategies have gained increasing attention. Artificial 
intelligence (AI) and machine learning (ML) techniques, 
particularly reinforcement learning (RL) and meta-heuristic 
optimization algorithms, provide promising solutions by 
enabling nodes to learn optimal routing behaviors from 
environmental feedback.

Among AI/ML techniques, deep reinforcement learning 
(DRL) has emerged as a powerful tool for sequential decision-
making in complex, dynamic systems. DRL combines 
reinforcement learning’s trial-and-error paradigm with deep 
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neural networks’ representation capability, allowing routing 
agents to learn optimal policies even in large state-action 
spaces. This capability is critical for IoT networks, where 
network states vary rapidly due to node mobility and energy 
depletion. DRL’s adaptability helps achieve improved energy 
efficiency, congestion management, and route stability 
compared to conventional or heuristic approaches.

On the other hand, the Shrike Optimization Algorithm 
(SOA) is a population-based metaheuristic algorithm that 
is inspired by the natural behaviors of shrike birds, such as 
nesting, reproduction, and feeding. It simulates the lifecycle 
of shrikes to balance exploration and exploitation phases 
during optimization, making it well-suited for complex 
multi-objective problems such as routing in IoT networks. 
SOA’s ability to quickly converge to near-optimal solutions 
while maintaining population diversity helps in selecting 
energy-efficient and congestion-free routes. Compared 
to other swarm intelligence algorithms (e.g., Particle 
Swarm Optimization, Ant Colony Optimization), SOA offers 
superior convergence speed and accuracy, with reduced 
computational complexity. In this work, SOA is applied to 
optimize Cluster Head (CH) and Relay Node (RLY) selection 
in Internet of Things (IoT) networks, focusing on energy 
efficiency, reliability, and adaptability.

The integration of DRL and SOA leverages the strengths 
of both techniques: DRL’s adaptive policy learning and SOA’s 
efficient optimization capabilities. This hybrid approach 
enables dynamic route selection that simultaneously 
maximizes network lifetime, minimizes delay, reduces 
congestion, and adapts to mobility. Unlike standalone DRL 
or heuristic methods, the hybrid algorithm balances long-
term learning with fast convergence to near-optimal routes 
in real-time.

This paper proposes a novel Hybrid Deep Reinforcement 
Learning-based Shrike Optimization Algorithm (DRL-SOA) 
for energy-efficient, congestion-aware, and mobility-
adaptive cluster-based routing in IoT networks. To the best 
of our knowledge, this is the first work combining DRL and 
SOA for IoT routing optimization. The protocol is evaluated 
against benchmark protocols including RIATA (mobility-
aware routing), DRL-IRS (reinforcement learning-based 
routing), and our previously developed DOACAR protocol 
(Dingo Optimizer-based Congestion-Aware Routing), which 
demonstrated strong energy performance in static scenarios 
but lacked adaptability under high mobility.

The rest of this paper is organized as follows: Section 
II reviews related work on AI-based routing protocols. 
Section III details the proposed DRL-SOA protocol design 
and optimization objectives. Section IV presents simulation 
setup and performance evaluation. Finally, Section V 
concludes the paper with insights and future research 
directions.

Related works
Optimizing Cluster Head (CH) and Relay (RLY) node selection 
is essential to improve energy efficiency, scalability, and 

adaptability in Wireless Sensor Networks (WSNs) and 
Internet of Things (IoT) environments. Recent research 
has applied fuzzy logic, reinforcement learning (RL), and 
metaheuristic optimization techniques to enhance routing 
performance under dynamic and resource-constrained 
conditions.

Fuzzy logic-based methods such as the Type-2 fuzzy-
based CH election scheme proposed by (Adnan, M., Ahmad, 
T., and Yang, T, 2021) have demonstrated improved energy 
efficiency and reliability. However, their practical deployment 
in large-scale networks is limited due to high computational 
complexity and poor scalability. Reinforcement learning has 
emerged as a promising technique for adaptive routing. 
(Bhimshetty, S., and Ikechukwu, A.V., 2024) employed Deep 
Q-Networks (DQN) for energy-aware routing in IoT, enabling 
real-time decision-making based on environmental 
conditions. 

Nain, Z., Musaddiq, A., Qadri, Y.A., Nauman, A., Afzal, 
M.K., and Kim, S.W., (2021) introduced RIATA, a reinforcement 
learning-based routing protocol that uses trickle timers to 
reduce control overhead and improve Packet Delivery Ratio 
(PDR), though it does not address CH or RLY node selection.

Ahmad, S., Khan, S., Khan, K.S., Naeem, F., & Tariq, 
M. (2023) proposed a deep reinforcement learning 
approach for resource allocation in IRS-assisted networks. 
While it enhances packet delivery and offers adaptive 
learning, it primarily targets IRS scenarios rather than 
core CH/RLY optimization in WSNs. L. Amudavalli, and 
K. Muthuramalingam. (2024) proposed a location-based 
energy-efficient routing protocol using the Teaching–
Learning Soccer League Optimization (TLSLO) algorithm 
for WSNs. Their work demonstrates the potential of 
metaheuristic optimization in improving clustering and 
routing performance, which inspires our DRL-SOA approach 
by emphasizing energy-aware CH selection and route 
formation. 

Nimmala, S., Gupta, N.S., Sena, P.V., Chari, K.K., Pasha, 
M.A., & Rambabu, B. (2025) applied DQN for smart energy 
applications in WSNs, demonstrating strong energy 
adaptability and learning-based optimization, but requiring 
significant training time and coordination among nodes.

Metaheuristic algorithms are widely used due to their 
global search capabilities and simplicity. Rajoriya, M.K., & 
Gupta, C.P. (2023) implemented the Sailfish Optimization 
Algorithm (SFO) for CH selection in Software-Defined 
WSNs, achieving energy-aware multi-hop routing but facing 
limitations in highly dynamic topologies. Panimalar, S., & 
Jacob, T.P. (2024) developed a hybrid congestion-aware 
routing system that combines Bee Colony Optimization with 
Intelligent Butterfly Optimization to achieve load balancing. 
However, the real-time adaptability of this method is 
affected by increased system complexity.

Farag, H., & Stefanovič, Č. (2021) presented an RL-based 
congestion-aware routing protocol for dynamic IoT 
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networks. While their model adapts well to changing traffic 
conditions, it lacks dedicated mechanisms for CH and RLY 
node selection, which can reduce routing efficiency in dense 
deployments.

Among bio-inspired algorithms, the Shrike Optimization 
Algorithm (SHOA), proposed by AbdulKarim, H.K., & Rashid, 
T.A. (2024), is notable for its balance between exploration 
and exploitation, fast convergence, and low computational 
overhead. SHOA is lightweight and suitable for real-time 
WSN/IoT applications, though its real-world validation 
remains limited. Yasodha, V., & Janita, V.S. (2025) introduced 
DOACAR, a Dingo Optimizer-based protocol designed for 
congestion- and mobility-aware CH and RLY node selection. 
While DOACAR demonstrates enhanced PDR and energy 
efficiency, it lacks a learning mechanism to support dynamic 
topology changes in real-time.

To address these limitations, the proposed DRL-SOA 
framework integrates the learning ability of DRL [2, 3, 4, 
5] with the optimization power of SOA by AbdulKarim, 
H.K., & Rashid, T.A. (2024). DRL enables context-aware, real-
time routing decisions based on changing environmental 
conditions, while SOA ensures efficient CH and RLY node 
selection with minimal computational overhead. This hybrid 
approach enhances energy efficiency, adaptability, and 
congestion control, making DRL-SOA highly suitable for 
scalable and dynamic IoT environments. The advantages 
and limitations of the discussed methods are summarized 
in Table 1.

Proposed work
This research introduces DRL-SOA, a hybrid protocol 
combining Deep Reinforcement Learning (DRL) with the 

Shrike Optimization Algorithm (SOA) to enable energy-
efficient, congestion-aware, and secure routing in IoT 
networks. The system comprises three key modules: DRL-
based route learning, SOA-based cluster head (CH) and 
relay node (RLY) optimization, and a trust-aware congestion 
detection mechanism. The architecture ensures real-time 
adaptability, efficient packet forwarding, and enhanced 
network lifetime.

System Model
The dynamic and resource-constrained nature of Internet 
of Things (IoT) networks necessitates intelligent routing 
mechanisms that ensure efficient, reliable, and secure data 
transmission. To meet these demands, this work proposes 
a novel hybrid routing protocol, DRL-SOA, which integrates 
Deep Reinforcement Learning (DRL) and the Shrike 
Optimization Algorithm (SOA). The proposed protocol is 
designed to adapt to topological changes, optimize energy 
consumption, minimize congestion, and enhance routing 
trustworthiness.

The IoT network is modelled as a graph ( )G N,C ,  
where { }1 2 3 tN n , n ,  n ..n= …  denotes the set of sensor nodes, 
and C represents the set of communication links between 
node pairs (ni, nj) that lie within the coverage area A of 
the IoT environment. The transmission delay and the 
physical distance between nodes influence each network 
connection. Let S be the source node transmitting data to 
a destination node D through a set of intermediate nodes 
based on the link quality determined by inter-node distance 
and network conditions. This is illustrated in Figure 1.

To ensure robust performance, the protocol employs 
a Fitness Function (FF) that incorporates key network 

Table 1: Comparative Summary of Recent Routing Protocols

Author & Year Method Advantages Limitations

Adnan et al. (2021) Type-2 Fuzzy Logic Energy-efficient, reliable High complexity, scalability issues

Bhimshetty & Agughasi 
(2023) 

DQN-based Reinforcement 
Learning

Learns optimal paths 
dynamically Long training time, high computation

Nain et al. (2021) RIATA (RL + Trickle Timer) Low control overhead, high PDR No CH/RLY optimization

Ahmad et al. (2023) DRL-IRS (Deep RL) Improves packet delivery, 
adaptive learning

High training complexity and resource 
usage

Rajoriya & Gupta (2023) Sailfish Optimization (SFO) Energy-aware CH selection, 
efficient clustering Limited in dynamic topologies

Farag & Stefanovič (2021) RL-based Congestion-Aware 
Routing Supports dynamic environments Lacks CH/RLY selection, limited energy 

awareness

Panimalar & Jacob (2024) Bee Colony + Intelligent 
Butterfly Optimization

Load balancing, congestion-
aware routing Complexity in dynamic adaptation

Nimmala et al. (2025) DQN-based Routing for 
Smart Energy

Energy adaptability, learning-
based routing Requires coordination and training time

AbdulKarim & Rashid (2024) SHOA (Shrike Optimization 
Algorithm)

Fast convergence, lightweight, 
global search Limited real-world validation

Yasodha & Janita (2025) DOACAR (Dingo Optimizer) Congestion-aware, energy-
efficient, scalable

Needs learning mechanism for dynamic 
networks
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parameters such as Link Stability Factor (LSF), Link Duration 
Factor (LDF), Residual Energy, Available Bandwidth, Received 
Signal Strength Indicator (RSSI), and Network Connectivity. 
These parameters are used as weights in route selection 
to fulfill application-specific Quality of Service (QoS) 
requirements. Additionally, traffic is classified based on 
priority to facilitate critical data delivery, while a trust-aware 
mechanism is implemented to avoid unreliable nodes.

The DRL component enables the protocol to learn 
optimal routing policies in real time by interacting with 
the environment and updating decisions based on current 
network states. In parallel, the SOA module enhances the 
convergence of DRL by optimizing the selection of Cluster 
Heads (CHs) and Relay Nodes (RNs) using a bio-inspired 
strategy based on the shrike’s hunting and feeding behavior. 
This combination ensures dynamic route optimization, 
improved network lifetime, reduced control overhead, and 
enhanced packet delivery.

Objective parameters evaluation

Link stability factor (LSF)
In the proposed approach, the Link Stability Factor (LSF) is 
employed to dynamically adjust the learning rate (alpha) 
in the Deep Reinforcement Learning model, thereby 
contributing to the formation of more stable routes during 
routing updates. This factor plays a pivotal role in making 
informed and adaptive routing decisions under dynamic 
network conditions.

Consider a communication link k=(a,b), where k∈  , 
and L represents the set of all active links. At a given time’

is ’, the positions of nodes a and b are denoted as ( )i is s
a ax , y  

and ( )i is s
b bx , y , respectively. At a subsequent time i 1 is sÄs+ = + , 

the updated positions of the nodes are ( )i 1 i 1s s
a ax , y+ +  and  

( )i 1 i 1s s
a bx , y+ +  as obtained through periodic beacon exchanges. 

The Euclidean distances between nodes a and b at times is  
and i 1s +  ​ are denoted as ( )isDT a,b  and ( )i 1sDT a,b+  respectively. 
These distance variations are used to compute the LSF, which 
reflects the temporal consistency of a link and guides the 
routing protocol in selecting stable communication paths.

( ) ( ) ( )i i i i i
2 2s s s s s

a b a bDT a,b x x y y= − + − 			  (1)

For a given communication link ( ) k a, b ,=  the change in 
connectivity distance is defined as: 

( ) ( ) ( )i 1 is sÄCD k DT a, b DT a,b+= − ,  where ( ) ( )i i 1s sDT a,b   DT a, band +  
represent the Euclidean distances between nodes a and b 
at times ‘ is ’ and ‘ i 1 s '+   respectively. This metric quantifies 
the variation in the physical distance between the nodes 
over the interval i 1 iÄs s s  .+= −  A smaller value of ∣ΔCD(k)∣ 
indicates higher link stability, implying minimal relative 
movement between the nodes. Conversely, a larger variation 
reflects high mobility and unstable connectivity.

The Link Stability Factor (LSF) for the link k=(a,b) over 
interval Δs is calculated as:

( )
( )

s
max

CD k
LF k

CD∆

∆
=

∆
				    (2)

Where, 

max maxÄCD 2 ä Äs= ⋅ ⋅  and ‘ maxä ’ denotes the maximum 
node speed. A lower LSF value corresponds to more 
consistent inter-node distance, signifying a more stable 
and long-lasting link. This stability allows nodes to remain 
within effective communication range for extended periods, 
thereby reducing the frequency of route recompilations 
and contributing to more efficient Q-learning updates with 
minimal adjustments.

Link Duration Factor
The Link Duration Factor (LDF) quantifies the predicted or 
observed time interval during which a communication link 
between two IoT devices remains intact before breaking. It 
is governed by the relative speed and direction of motion 
of the nodes involved. By evaluating LDF, routing protocols 
can assess the link’s stability, enabling them to make 
proactive decisions for maintaining seamless connectivity. 
This minimizing the chances of packet loss during mobility-
induced transitions and ensuring higher Quality of Service 
(QoS) in dynamic IoT environments.

The quantity of variation in speed between two IoT 
devices in the direction of ‘ v,p,q ’ is given by,

	 (3)

	 (4)

			   (5)

Let ‘ ’ represent the average velocities of nodes i 
and j, respectively. The directional variations between the 
two nodes are described in the 3D space by angles θi, θj​ (in 
the v p−  plane) and τi, τj​ (in the z-axis). These parameters 
capture node dynamics in spatial dimensions.

The duration of communication link ‘ ijT ’​ between nodes 
i and j is defined as the period during which the squared 
differences in their movement parameters (velocity and 
direction vectors) remain within a predefined maximum 
distance threshold 2

maxd . Figure 1: Data communication in IoT
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2 2 2
v p qm w w w= + +

				    (6)

( ) ( ) ( )v i j p i j q i jn 2 w v v w p p w q q   = − + − + −  	 (7)

( ) ( ) ( )2 2 2

i j i j i jp v v p p q q= − + − + −
			  (8) 

By using the above derivations (6), (7) and (8), ‘ ijT ’ is given by, 

2

ij
n  n 4mp

T
2m

− ± −
= 				    (9)

Where, ( ) ( ) ( )2 2 22
max i j x ij i j p ij i j q ijd v v w T  p p w T q q w T= − + + − + + − +

A larger LDF indicates a more stable link, thereby 
improving the reliability of the route over time. This 
prediction capability is essential for minimizing packet loss, 
enabling smooth handovers, and maintaining a high Quality 
of Service (QoS) in mobile IoT environments.

Available Bandwidth
The primary goal of routing is to find suitable paths to 
the destination, regardless of the current network load 
or application requirements. However, this can lead to 
network congestion when traffic is high, which reduces 
overall performance. To maintain efficiency, it is important 
to check the available bandwidth along the selected path. 
Throughput is limited by the lowest bandwidth node along 
the route, also known as the bottleneck. Therefore, selecting 
paths with higher available bandwidth ensures better data 
transfer. Measuring residual bandwidth using the IEEE 802.11 
MAC protocol is not straightforward. To overcome this, the 
study uses a method from earlier research that calculates 
the Channel Occupancy Factor (COF), which indicates how 
much of the wireless channel is being used by mobile nodes 
in the area.

Each node monitors radio activity continuously to 
estimate the available bandwidth locally. This is done over 
a fixed observation period, called (

BWT /sec), which is set to 1 second. During this time, 
each node records how long it uses the channel. To detect 
whether the channel is idle or busy, two sensing techniques 
are used. Physical sensing includes energy detection and 
carrier sensing, while virtual sensing relies on the Network 
Allocation Vector (NAV). The channel is considered idle when 
the node is neither transmitting nor receiving, and the wait 
time exceeds the NAV value. It is marked as busy if the node 
is active or if the wait time is less than or equal to the NAV. 
Based on these observations, the COF is calculated using 
Equation (10), helping determine how much bandwidth is 
still available for use.

( ) ( )busy BW

BW

Cl T
COF v

T
= 			   (10)

The channel’s busy state is calculated using Eq. (11) by using 
Figure 2. where iBCt represents the time the channel is busy 
due to each node i.

( )
ibusy BW BC

i

 l T t=∑ 				    (11)

A windowed mean approach is employed to precisely 
determine the COF. Hosts determine the available 
bandwidth for fresh data transfers by multiplying channel’s 
total bandwidth by proportion of idle time within a 
specific timeframe. Available bandwidth can be concisely 
represented by Eq. (12).

( ) ( )BW
BW

BW

AVAV v 1 COF v
Cl

= = − 			   (12)

Nodes Residual Energy (RE)
Residual energy (RE) of a node plays a dominant role in 
mobile IoT networks that showing the lifecycle of the 
network and equilibrium of energy consumption. To 
comprehend this equilibrium in the network, it is essential 
to firmly regulate the nodes with more RE to contribute to 
forwarding task.

The factor ‘
( )

( ) ( )
t

init t

Ey i
Ey i Ey i− ’ is included in the objective 

function, wherein ‘ ( )initEy i ’ and ‘ ( )tEy i ’ are initial and 
RE of node (i) correspondingly. Concurrently, factor ‘

( ) ( )
( ) ( )

NN
t

i i
j 1 init t

Ey j1Ey TP
NN Ey j Ey j    =

=
−∑ ’ is included to mean RE of adjacent node.

NN  - Amount of adjacent nodes of ‘i’ for ‘ iTP ’ iTP  - 
Transmitting Power 

Network Connectivity
Ensuring network connectivity is vital for regular network 
functioning. By including this factor, it can be ensured 
that the network remains connected after several game 
iterations, when transmitting power at a node is reduced. 
Connection function is given by,

( )i j

1,   
NC x , x

0,   
Link connected

Else


= 


			   (13)

Objective function
Using the derived parameters for LSF, link duration quality, 
energy consumption, bandwidth availability, RSSI, and 
network connectivity, we form an objective function as 
follows:

	 (14)

Fig. 2: Channel Busy State
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Where,

1 2 3 4 5á ,á ,á ,á  and á  - Weight factors
The objective function of proposed work is,

U
i, jOBJ e−= 					     (15)

The objective function is limited to the range [0, 1]. Four 
main criteria are considered when determining the objective 
function for improving QoS of network. To reduce number 
of retransmissions, node coverage and distance amid nodes 
are considered, and to stabilize node energy, energy metric 
is taken into consideration, while the success rate improves 
the trustworthiness of data delivery.

Hybrid deep reinforcement learning and Shrike 
Optimization Algorithm (DRL-SOA)

DRL background
Our complex routing problem aligns with decentralized 
partially observable markov decision process (Dec-
POMDP) framework, commonly employed for collaborative 
decision-making among multiple agents (Bhimshetty, S., & 
Ikechukwu, A.V., 2024). Dec-POMDPs model and optimize 
agent behavior in uncertain environments by considering 
the actions   , observations  , and states   of all involved 
agents. A POMDP is characterized by a set of potential 
system configurations (states), a range of possible actions, 
and a collection of observable outcomes. Actions are 
selected probabilistically based on a policy [ ]äì : 0,1× →   
(given by δ), influencing the system’s transition to a new 
state governed by the transition function of the environment 

: × →    . This transition yields a reward based on 
present state as well as action  r : × →   , as defined by 
the reward function. Agents perceive the environment 
through observations o : →  , which are functions of the 
system state. An overview of DRL algorithms and schemes 
used for developing hybrid routing policies for the problem 
is provided in the ensuing sections.

Value Optimization and Deep Q-learning
To determine the ideal policy, Q-learning, an extensively 
used model-free algorithm, is employed to estimate action-
value (AV) function for a given policy ( )( )ìV s,a . AV function 
(Q-function) represents predictable cumulative discounted 
reward obtained by implementing actions ‘ a ’ in state (s) 
and consequently following optimal policy. Mathematically, 
it is defined as:

	
(16)

Where, ‘ ë ’ indicates discount factor and ‘ T ’ indicates time 
horizon The AV function is computed recursively as shown 
below.

		  (17)

Recent DL models have enabled RL algorithms to 
approximate the Q-function using Deep Neural Network 
(DNN), i.e. , where ‘ ä ’ represents a collection 
of NN parameters (i.e. objective function parameters) Deep 
Q -Network ( DQN ), as employed by Nimmala, S., Gupta, N.S., 
Sena, P.V., Chari, K.K., Pasha, M.A., & Rambabu, B. (2025), is 
used to learn the optimal AV function ( V ) by reducing the 
prediction loss. 

Recent advancements in deep learning have empowered 
reinforcement learning algorithms to approximate 
Q-function using DNNs. This function represented as 

 is parameterized by NN weights ‘δ’ (LS, link 
duration, available bandwidth etc.). A prominent technique 
in this domain is Deep Q-Networks (DQN) [5]. DQN learns 
ideal AV function by reducing the following loss:

	 (18)

Where, ‘ ’ is a target network with parameters which are 
synchronized periodically with primary network’s parameters 
(δ) to enhance training stability. DQN further employs a large 
experience replay buffer to store past experiences ( )s,a, r,s′ . 
Ultimately, the ideal deterministic policy is determined by 
selecting action with maximum Q-value for the given state 
as shown below and derived once, optimal parameters  
are determined.

			   (19)

Policy Optimizations
Policy gradient schemes offer an alternative approach to 
directly optimize the policy parameters without explicitly 
estimating the expected return. A stochastic policy μ 
( )t tì a s|  assigns probabilities to actions ( ta ) for state ( ts ) 
parameterized by ‘δ. The objective in policy optimization 
is to increase the expected discounted return function by 
adjusting these policy parameters.

			   (20)

An experience sequence (or trajectory), denoted as ‘τ’ is 
composed of states, actions and rewards as { }0 0 1s ,a ,s ,…  with 

( )0 0 0s p s∼  and μ ( )t 1 t t aì a s+ ∼ | , ( )t 1 t 1 t ts s s ,a+ +∼  | . The discounted 
return is ‘ ôR ’ for sequence ‘τ’, where ‘ 0p ’ is initial state 
distribution. The AV function ( ì Vμ), state-value function ( ì Vμ) 
as well as advantage function ( ìAμ) are given by:

		  (21)

		  (22)

			   (23)
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Where, 

 and ( )t 1 t 1 t ts s s ,a+ +∼  |

 Shrike Optimization Algorithm (SOA)
The Shrike Optimization Algorithm (SOA) is a population-
based optimization technique inspired by the natural 
behaviors of shrike birds, including nesting, reproduction, 
and survival. In SOA, the population consists of multiple 
nests, each containing two dominant parent birds and a set 
of offspring called nestlings. These nests represent potential 
solutions to optimization problems, where the best solution 
within a nest is termed the local best, and the best across all 
nests is identified as the global best. In this research, SOA is 
applied to address a multi-objective optimization problem 
involving the selection of Cluster Head (CH) and Relay 
(RLY) nodes in Internet of Things (IoT) networks (Figure 3). 
Each bird or candidate solution represents a possible CH/
RLY configuration, evaluated using parameters such as 
residual energy, Received Signal Strength Indicator (RSSI), 
delay, link stability, and node connectivity. The local best 
solution reflects the learned action based on Q-values, 
while the global best represents the optimal strategy for 
routing decisions. By simulating the shrike’s adaptive and 
goal-directed behavior, SOA efficiently explores and exploits 
the solution space to ensure energy-efficient and reliable 
communication in dynamic IoT environments.

SOA begins by initializing key parameters: the population 
size (N), the number of nestlings per nest ( B ), and a natural 
influence factor (C). The algorithm starts with a population 
of N nests, each containing two randomly generated 
parent birds. Once the initial population is established, B  
nestlings are generated for each nest. The population can 
be represented by Eq. (24).

( )

im if im if

ij ij ij ij

im if im if

ij ij ij ij

p p p p
n n n n

Population N
p p p p
n n n n

    
…    

    
 =  
    

…         

   		  (24)

Consider a population modeled as a pool of N nests, where 
each nest ( )inest  1  For i to N=  ​ represents a candidate solution 
space. Each nest contains two parent solutions and a set of 
nestlings, all of which contribute to the optimization process. 
The parent solutions are initialized randomly within the 
defined search boundaries using Eq. (25). Here, LB  and UB  
denote the lower and upper bounds of the solution space, 
respectively, and rand  is a uniformly distributed random 
number 

( )ip LB rand UB LB= + − 			   (25)

During the initialization process, two birds are created as 
parents for each nest. The most physically fit bird will then be 
selected as the dominant male ( )parent M  while the remaining 
bird becomes the dominant female ( )parent F . In the breeding 
phase, each nest will produce a total of B nestlings using Eq. 
(26) and Eq. (27). The value of ‘ ’ is generated from both 
parents, and a random value ( r ) is chosen from the range 
of -1 to 1. This value is then used to generate the ‘ jstling ’, 
where ‘ i ’ ranges from 1 to B.

			   (26)

			   (27)

The young birds rely heavily on their parents for food, 
with the male parent taking on a dominant role in feeding. 
However, the male only feeds independently, while the 
female is capable of both independent feeding and feeding 
the nestlings if necessary. This system of dominant parental 
feeding leads to the search for and exploitation of optimal 
solutions. Each nest has two dominant parents, with the 
first being considered the optimal solution and the second 
being the backup. During the exploit phase, each nestling 
will be fed by their parent, leading to the convergence to 
the optimum solution. In the SOA algorithm, after initializing 
the nests and defining the parameters for the parents, the 
value for each dimension will be determined using Eq. (28), 
based on their specific objective function.

max2xt /Tr e−= 	 -------   (28) 

The ‘ r ’ parameter plays a critical role in feeding and is 
calculated to enhance exploration. The dimension variable 
for the ‘ jbird ’ is denoted by ‘ x ’, while ‘ t ’ stands for the 
current iteration, and ‘ maxT ’ represents the maximum 
allowed iteration for performing SOA. Utilizing Eq. (29), every 
parent bird will be able to feed itself.w

	 -------(29)

However, when it comes to nourishing their hatchlings, the 
value of Δ food is calculated differently according to Eq. (30). Fig. 3: Shrike Bird Life Cycle
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In this case, ‘ jbird ’ represents the current state of the bird, 
and ‘ parent M ’ is the male parent responsible for providing food.

Δ ( )j j parent parent Ä food r  bird M M= × − + 	 (30)

Even though the nestlings were not able to survive solely on 
food provided by the male parent, they attempted to survive 
by relying on the female parent and using Eq. (31), which is 
equivalent to Eq. (30) but with r  ranging from 1 to1 − , and 
incorporating sin(α), here ‘α’ is a constant factor.

			   (31)

Once the birds receive food, their positions are updated to 
reflect the new state using the following equation,

				    (32)

This update ensures that each bird’s behavior adapts based 
on its feeding outcome. The fitness of each bird is evaluated, 
and the one with the highest fitness, denoted as t 1

j’bird + ’​, is 
selected to proceed to the next generation. However, not 
all birds may successfully receive food in every iteration. If a 
bird (‘ jbird ’) does not receive nourishment from its parent, it 
still attempts to adapt by generating a new food value using 
a randomized exploration mechanism.

This is achieved by using Eq. (32) to generate a new 
amount of food ‘Δfoodj’. This equation considers a randomly 
generated value, r, between the range of -1 to 1, as well as 
a variable parameter (α). This ‘α’ is generated randomly 
between 0 and the dimension of the problem, and is used 
to increase the element of randomness in the process. 
By utilizing the sine of this variable, the values will vary 
over time and lead to different solutions being explored. 
Incorporating sin(α) introduces diversity into the search, 
allowing the bird to explore solutions further away from 
its current state.

This strategy is critical for escaping local optima and 
enhancing the diversity of the search space. By randomly 
searching and diverging from the local best solution, the 
algorithm can generate new, potentially more optimal 
solutions. The corresponding update equation is given by 
Eq. (33)

		  (33)

The SOA employs a unique strategy to achieve optimal 
solutions. It maintains a record of the best solution found 
at each nest as its local best. The overall population then 
selects the best solutions from all local best to serve as the 
global best. This approach effectively tackles the issue of 
multiple modes by using a group of solutions. Each nest 
contains several birds (solutions), and after a fixed number 
of iterations ‘k’, old birds are replaced by new ones. However, 
the two best birds in each nest are kept as parents to guide 

the next generation. This helps the population gradually 
move toward better solutions.

SOA is chosen for its excellent balance between 
exploration and exploitation, mimicking shrike hunting 
behaviour. It offers low computational overhead, making 
it ideal for resource-constrained IoT nodes. The algorithm 
achieves fast convergence with high accuracy, suitable for 
real-time CH/RLY updates. It inherently supports multi-
objective optimization across energy, RSSI, delay, and 
connectivity. Unlike other algorithms, SHOA remains robust 
and adaptive in dynamic and mobile IoT environments.

DRL Algorithm Based on SOA for Optimal Path 
Selection
This section presents DRL-SOA, a hybrid routing algorithm 
that integrates Deep Q -Learning with the Shrike 
Optimization Algorithm (SOA) to achieve efficient path 
selection in IoT networks. In this framework, SOA supports 
the reinforcement learning process by improving the 
exploration of possible routes, leading to more effective 
Q-value updates. By combining learning-based decision-
making with bio-inspired optimization, the proposed model 
enhances adaptability, reduces energy consumption, and 
improves routing performance in dynamic and resource-
constrained IoT environments.

Deep Reinforcement Q-Learning Framework Based 
on SOA
DRL-SOA’s architecture combines the strengths of deep 
Q-learning and SOA to enhance overall performance of 
the model. The use of SOA allows for dynamic exploration 
and exploitation of the search space, while the deep 
Q-learning component helps to make more informed 
decisions by utilizing previously learned information. In 
this architecture, each feature or state is represented by a 
nest, and each participant (nest or node) is considered a 
population in SOA. This allows for a parallel and collaborative 
optimization process, further enhancing the model’s 
performance. The Q-values in every nest represent the 
learning actions, which are constantly updated based on 
the fitness values determined by the environment. This 
allows for the model to adapt and learn in a dynamic and 
changing environment. Additionally, the incorporation of 
SOA allows for the identification of the local and global best 
sequences of learning actions, which further improves the 
overall performance of the model. Through a fixed number 
of iterations, DRL-SOA considers a new set of nests each time, 
providing a continuous and dynamic learning process. This 
process of updating and optimizing the learning actions 
in a collaborative and parallel manner leads to a more 
efficient and effective reinforcement learning model. As 
a result, DRL-SOA can successfully handle complex and 
highly dynamic environments, making it a powerful tool for 
applications in fields such as robotics, gaming, and finance.
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Updating of Q-function based on SOA
This paper presents a novel approach for updating 
Q-function by adopting the SOA algorithm. The focus is on 
improving the overall performance of IoT networks through 
optimized route selection. The problem is considered as 
an optimization problem, where the fitness value plays a 
crucial role. To define the problem, the paper introduces two 
sets, { }1 2s ,s , ..= …  and { }1 2á ,á ,= … , representing states 
( is ) and learning actions (αi) respectively. The reward value 
( tr ) is computed based on objective function of node by 
considering the present state ( ts ) and learning action ( tá ).
State, action and goal state are defined (Ahmad, S., Khan, 
S., Khan, K.S., Naeem, F., & Tariq, M., 2023). As the system 
moves from one state to another, the reward at a given 
time is determined by the state transition function, which 
is defined as . In this function, 
the system moves from state t 1 s−+ , obtaining a reward ( tr ) at 
time ( t ). The aim is to identify ideal set of learning actions 

{ }t t 1á ,á , .+= …  that improves total reward (R) based on FF  
( )

ts =   ( )tR s ,  at time ‘ t ’. 
The total reward is the total rewards of the user, where 

n i
t i 1 tr r== ∑ . At time ‘ t ’, the learning agent obtains a reward 

( tr ) when performing a learning action (αt) in state ( ts ). The 
paper proposes DRL-SOA’s algorithm which combines deep 
Q-learning with shrike optimization to find optimal set of 
actions in state i.e., nest ( s ). The objective is to maximize 
total reward over an extended period of time leading to 
better overall performance. Thus, the paper defines FF as 
total reward for Q-values and its calculated as follows.

				   (34)

With  in one episode of learning, total 
amount of learning actions is represented by ‘ T ’. The 
present reward for ‘ tht ’ learning action is denoted by ‘ tr ’, 
while the discount factor which has a value between 0 and 
1 is represented by ‘ ë ’.

The IoT optimal route selection problem is solved by 
finding ideal set of learning actions denoted by =  { }t t 1á ,á , .+ …  
based on their corresponding Q-values for the local best. 
The global best is signified by state transition probability 
of selecting a specific learning action (α) with regard to ‘
s ’ which lies in the range [0, 1]. To update solutions, a 
propounded approach is utilized by comparing local 
best solution got by every learning agent and global best 
solution got by every learning agent by using a FF. Fitness 
is calculated for nodes, and best target Q-value represented 
by local best ‘ t+1 

ibird ’ is found by respective ‘ thi ’ learning 
agent. The global best is determined by combining all the 
local best solutions, representing the best target Q-value 
for learning agents based on fitness of each node on route. 
The Q-function for each learning agent is updated using 
both local as well as global best target Q-values as defined 
by proposed strategy is given by,

		  (35)

			   (36)

The variables ‘ r ’ and ‘α’ are used to represent random 
numbers with values between -1 and 1, while the variable ‘α’ 
is used to represent a random function that has a range of 0 
to the dimension. The variable ‘ ’ signifies the Q-value 
of the ‘ th i ’ nest when it chooses to take action (αt) in ‘ ts ’ at 
‘t’. The term ‘ ’ signifies local best Q-value found by ‘ th i ’ 
nest or learning agent. Global best Q-value is obtained by 
considering all local best Q-values and using them in Eq. (35).

Proposed DRL-SOA algorithm
DRL-SOA is a routing method that combines deep 
reinforcement Q-learning with the Shrike Optimization 
Algorithm. As described in Algorithm 1, it starts by initializing 
the Q-learning process with a value table ‘ ’ and a 
random factor ‘ r ’, which simulates natural behaviour. 
The r value, ranging from –1 to 1, represents variation in 
environmental patterns like feeding. The learning agent 
begins in an initial state ( 1s ). At each time step (t), it takes 
an action (αt), moves to a new state ( t 1s +



), and receives a 
reward ( tr ). This experience is saved in memory as a tuple 
( ) for learning. For each user, DRL-SOA 
performs three main steps are, (i) It calculates the cumulative 
reward (R) using Eq. (33), (ii) It identifies the best local and 
global Q-values based on the chosen actions (A), (iii) It 
updates these Q-values using Eq. (35). This cycle repeats 
over multiple iterations to find the best routes for each user 
in the network.

Algorithm 1: Psudocode for Deep Reinforcement 
Q-Learning Using Shrike Optimization
Input: Reward ( R ) - Cumulative reward for ‘ ’, 
Local best reward ( LR ) - Cumulative reward for ‘ ’
Global best reward ( GR ) - Cumulative reward for 

Max _ it - Maximum amount of iterations 

Set replay buffer size 

Set ‘ ’ and current state ‘ ’

for (every user)

for ( j 1  to Max _ it= )

for (every bird i 1 ,...,m= )

Initialize ‘s’

for ( ) 

Execute learning action ‘αt’

Determine next state ‘ t 1s−+ ’ and reward ‘
tr ’

Store  in buffer 
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Compute cumulative reward iR  using Eq. (34)

// Update local best target

if ( L L
i i iR R  or R  1 < == −  ) then

L
i iR   R=

end if

// Determine Nest’s global best target value 

if ( G G
iR R  or R 1< == − ) then

end if

end for

Update local best target value ‘ ’ using Eq. (34)

Update global best target value ‘ ’by using Eq. (35)

end for

end for

end for

As shown in Algorithm 1, key parameters for the SOA such 
as the number of nests N, maximum iterations , 
constant B, learning rate α, and exploration factor k are first 
initialized. During each iteration, the cumulative reward 
(or objective function) for each nest is calculated using Eq. 
(34). If the current fitness is greater than local best target 
(based on Q-values), it is assigned as the new local best 
Q-value. Otherwise, it remains the same. Among all nests, 
the one with the highest fitness becomes the global best. 
The target positions of nests are updated using Equations 
(35) and (36), guided by both local and global best Q-values. 
The algorithm continues until the maximum number of 
iterations is reached.

Results and Discussions
The proposed DRL-SOA (Hybrid Deep Reinforcement 
Learning with Shrike Optimization) was tested using the 
NS-3.23 network simulator to check its performance in 
changing IoT environments. The simulation settings, shown 

in Table 2, were chosen to reflect real-world IoT setups with 
dense and mobile nodes. The main performance measures 
were network lifetime, delay, energy use, packet delivery 
ratio (PDR), routing overhead, and throughput.

DRL-SOA was compared with three well-known IoT 
routing protocols: RIATA, DRL-IRS, and DOACAR. RIATA 
handles mobility but has high overhead and poor scalability. 
DRL-IRS saves energy using reinforcement learning but 
is computationally heavy. DOACAR works well in stable 
networks but struggles in dynamic ones. Overall, DRL-SOA 
showed better performance by using energy efficiently and 
making smart routing choices, even in mobile and large-
scale networks.

Impact of Node Density on Protocol Performance

Network lifetime
DRL-SOA improves network lifetime by 40–60% compared to 
RIATA and DRL-IRS by using energy- and bandwidth-aware 
route selection. This prevents overuse of certain nodes and 
spreads energy usage evenly. Unlike RIATA and DOACAR, 
which lack adaptive energy control, DRL-SOA supports 
longer operation in dense networks.

End-to-end delay
DRL-SOA achieved the lowest end-to-end delay of 0.65 ms 
at 50 nodes, significantly outperforming RIATA, DRL-IRS, 
and DOACAR. Its real-time learning quickly finds optimal 
paths and avoids frequent retransmissions. This ensures 
fast and stable communication, ideal for time-sensitive IoT 
applications (Figure 4).

Table 2: Presents the simulation setup details

Parameter Value Parameter Value

Simulator NS-3.23 Number of nodes 50 to 250

Topology Random Node placement Packet size 512 bytes

Mobility Model Random Waypoint (RWP) Packet rate 2Kb/sec

Speed 10 m/s to 50 m/s Routing Algorithm DRL-SOA

Pause Time 10 seconds Initial energy 100J

Dimensions 1500*1500 m Simulation Time 200Sec

Figure 4: Average Delay (in msec) 
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Energy consumption
DRL-SOA consumed just 2.34 Joules at 250 nodes, saving 
up to 78.5% energy compared to RIATA (10.9 J). Its hybrid 
design reduces control overhead and avoids frequent route 
rediscovery. By factoring in energy and transmission cost, 
it ensures more efficient, longer-lasting communication 
(Figure 5).

Packet delivery ratio (PDR)
DRL-SOA achieves over 98% packet delivery ratio even at 
50 m/s mobility, outperforming RIATA (85%) and DOACAR 
(90%) with a 13% gain over RIATA. Its predictive learning and 
dynamic path adaptation help maintain reliable delivery. 
This makes it highly effective in mobile and frequently 
changing IoT networks (Figure 6).

Routing overhead
DRL-SOA records just 10.26 bytes/sec routing overhead at 
250 nodes—60% lower than RIATA (25.56), 52% lower than 
DRL-IRS (21.3), and 44% lower than DOACAR (18.4). This 
efficiency comes from minimizing redundant route updates 
and control packets. In contrast, other protocols rely on 
frequent network broadcasts, increasing overhead under 
mobility (Figure 7).

Throughput
DRL-SOA maintains over 45 Kbps throughput at high 
mobility, outperforming RIATA which falls below 35 Kbps 
(30% improvement). This is due to its stable path selection 

and lower packet loss from congestion or link failures. Its 
learning-optimization hybrid ensures reliable, high-speed 
transmission even in dynamic IoT conditions (Figure 8).

Overall, DRL-SOA demonstrated superior performance 
across all evaluated metrics, outperforming RIATA, DRL-IRS, 
and DOACAR. The proposed protocol improved network 
lifetime by up to 60%, reduced energy consumption by 
78.5%, lowered delay by 78%, enhanced PDR by 13%, 
decreased routing overhead by 60%, and increased 
throughput by 30%. These improvements validate the 
effectiveness of integrating deep reinforcement learning 
with the Shrike Optimization Algorithm to deliver a scalable, 
energy-efficient, and reliable routing solution for dynamic 
IoT environments.

Impact of Node Speed on Protocol Performance
In mobile IoT systems, node mobility is a critical factor in real-
time environments, such as smart healthcare and vehicle 
networks. When devices move, the network changes quickly, 
impacting routing. To test how well DRL-SOA handles this, 
node speeds were adjusted from 10 m/s to 50 m/s to reflect 
real-world movement. The Random Waypoint Mobility 
Model was employed, allowing nodes to move in random 
directions, pause, and then move again. This setup creates 
frequent changes in the network. By testing different speeds, 
we assessed how well DRL-SOA adapts, manages delays, and 

Figure 5: Energy Consumption (in Joules) 

Figure 6: Packet Delivery Ratio (%) 

Figure 7: Routing Overhead (in bytes / sec)

Figure 8: Throughput (in Kbps) 
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remains reliable as movement increases. The results revealed 
significant changes in performance as speed increased.

End-to-end delay
As node speed increased, all protocols showed higher delays 
due to longer route setup and queuing. DRL-SOA maintained 
the lowest delay at 50 m/s (8.28 ms), outperforming RIATA 
(20.91 ms), DRL-IRS (16.64 ms), and DOACAR (13.47 ms). Its 
learning-based prediction helps avoid disruptions, reducing 
delay by up to 60% (Figure 9).

Energy Consumption
DRL-SOA consumes 2.85 J at 50m/s, significantly lower than 
RIATA (15.32 J), DRL-IRS (11.24 J), and DOACAR (7.93 J), and 
an energy saving of 81%, 74.6%, and 64%, respectively. This 
efficiency comes from DRL-SOA’s adaptive routing, which 
considers residual energy and bandwidth. Its hybrid learning 
strategy reduces unnecessary transmissions, conserving 
energy even in high-mobility environments (Figure 10).

Packet Delivery Ratio (PDR)
As node speed increased, PDR dropped for all protocols 
due to more route breaks and unstable links. DRL-SOA 
maintained the highest PDR at 97%, outperforming RIATA 
(83%), DRL-IRS (87%), and DOACAR (87%), showing a 16.8% 
gain over RIATA. This reliability is due to DRL-SOA’s adaptive 

learning and bandwidth-aware routing, which helps predict 
link failures and maintain stable paths (Figure 11).

Routing Overhead 
As node speed increased, routing overhead rose for all 
protocols due to frequent route rediscovery and updates. 
DRL-SOA demonstrated the lowest overhead at 10.35 
bytes/sec at 50 m/s, compared to 24.56 bytes/sec for RIATA, 
representing a 57.8% reduction. This efficiency results from 
DRL-SOA’s selective control message exchange and policy-
based updates, which minimize unnecessary routing traffic 
(Figure 12).

Throughput 
Throughput dropped for all protocols as mobility increased 
due to more packet loss and unstable routes. However, 
DRL-SOA maintained the highest throughput at all speeds, 
reaching 42.16 Kbps at 50 m/s. This outperforms RIATA 
(25.56 Kbps), DRL-IRS (33.45 Kbps), and DOACAR (37.12 Kbps), 

Figure 9: Average Delay (in msec) 

Figure 10: Energy Consumption (in Joules) 

Figure 11: Packet Delivery Ratio (%) 

Figure 12: Routing Overhead (in bytes / sec) 

Figure 13: Throughput
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showing a 64.9% improvement over RIATA. This success is 
due to DRL-SOA’s fast learning, efficient path selection, and 
reliable data transmission (Figure 13).

Varying node speed simulations offer valuable insights 
into routing performance under dynamic conditions. 
DRL-SOA consistently delivers stability, energy efficiency, 
and timely communication across mobility levels. This 
resilience highlights its suitability for mission-critical and 
latency-sensitive IoT applications.

Conclusion
This paper presents and evaluates the DRL-SOA protocol, 
which combines Deep Reinforcement Learning with 
the Shrike Optimization Algorithm. Its performance was 
tested against RIATA, DRL-IRS, and DOACAR in dynamic 
IoT environments. Key metrics such as packet loss, packet 
delivery ratio (PDR), routing overhead, throughput, average 
delay, and energy consumption were analyzed under 
different node speeds and densities.DRL-SOA consistently 
delivered better results than the compared protocols. It 
achieved lower packet loss, higher PDR, reduced routing 
overhead, better throughput, and shorter delays. Its 
intelligent learning and energy-aware routing approach 
helped maintain strong performance even in high-mobility 
scenarios.

The protocol also showed significant improvements 
in energy efficiency and scalability, making it well-suited 
for real-time, resource-limited IoT applications like smart 
healthcare, vehicular networks, and industrial automation.

These findings highlight the potential of combining 
deep learning with nature-inspired optimization techniques 
to tackle the challenges of modern wireless communication. 
In the future, the work will explore interference-aware 
routing to improve reliability in dense networks. There 
are also plans to develop hybrid optimization models and 
extend the protocol to support multi-hop communication 
and 6G-based IoT systems.
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