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Abstract

The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of
handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols
often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces
a novel hybrid routing framework, DRL-SOA, which fuses deep reinforcement learning (DRL) with the shrike optimization algorithm
(SOA) to enable real-time, congestion-aware, and energy-efficient routing in loT environments. The DRL component incrementally
learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by
identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-
parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity
to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing
approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan,
reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility
rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation loT systems.

Keywords: Congestion-aware routing, Deep reinforcement learning, Energy efficiency, Internet of Things, Routing protocols, Shrike

optimization algorithm.
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Introduction

The rapid expansion of the Internet of Things (loT) has led
to an unprecedented growth in the number of connected
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devices, requiring efficient, reliable, and energy-aware
communication protocols. loT networks often consist of
numerous resource-constrained sensor nodes that operate
in dynamic and heterogeneous environments. These
networks face significant challenges such as limited energy
resources, frequent topology changes due to node mobility,
congestion, and the need for low-latency data transmission.

Traditional routing protocols designed for static or low-
mobility wireless sensor networks are often inadequate
for modern loT applications, especially those requiring
high mobility support (e.g., vehicular networks, wearable
healthcare devices). Consequently, intelligent and adaptive
routing strategies have gained increasing attention. Artificial
intelligence (Al) and machine learning (ML) techniques,
particularly reinforcement learning (RL) and meta-heuristic
optimization algorithms, provide promising solutions by
enabling nodes to learn optimal routing behaviors from
environmental feedback.

Among Al/ML techniques, deep reinforcement learning
(DRL) has emerged as a powerful tool for sequential decision-
making in complex, dynamic systems. DRL combines
reinforcement learning's trial-and-error paradigm with deep
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neural networks’ representation capability, allowing routing
agents to learn optimal policies even in large state-action
spaces. This capability is critical for loT networks, where
network states vary rapidly due to node mobility and energy
depletion. DRL's adaptability helps achieve improved energy
efficiency, congestion management, and route stability
compared to conventional or heuristic approaches.

On the other hand, the Shrike Optimization Algorithm
(SOA) is a population-based metaheuristic algorithm that
is inspired by the natural behaviors of shrike birds, such as
nesting, reproduction, and feeding. It simulates the lifecycle
of shrikes to balance exploration and exploitation phases
during optimization, making it well-suited for complex
multi-objective problems such as routing in loT networks.
SOA’s ability to quickly converge to near-optimal solutions
while maintaining population diversity helps in selecting
energy-efficient and congestion-free routes. Compared
to other swarm intelligence algorithms (e.g., Particle
Swarm Optimization, Ant Colony Optimization), SOA offers
superior convergence speed and accuracy, with reduced
computational complexity. In this work, SOA is applied to
optimize Cluster Head (CH) and Relay Node (RLY) selection
in Internet of Things (loT) networks, focusing on energy
efficiency, reliability, and adaptability.

The integration of DRL and SOA leverages the strengths
of both techniques: DRL's adaptive policy learning and SOA’s
efficient optimization capabilities. This hybrid approach
enables dynamic route selection that simultaneously
maximizes network lifetime, minimizes delay, reduces
congestion, and adapts to mobility. Unlike standalone DRL
or heuristic methods, the hybrid algorithm balances long-
term learning with fast convergence to near-optimal routes
in real-time.

This paper proposes a novel Hybrid Deep Reinforcement
Learning-based Shrike Optimization Algorithm (DRL-SOA)
for energy-efficient, congestion-aware, and mobility-
adaptive cluster-based routing in loT networks. To the best
of our knowledge, this is the first work combining DRL and
SOA for loT routing optimization. The protocol is evaluated
against benchmark protocols including RIATA (mobility-
aware routing), DRL-IRS (reinforcement learning-based
routing), and our previously developed DOACAR protocol
(Dingo Optimizer-based Congestion-Aware Routing), which
demonstrated strong energy performance in static scenarios
but lacked adaptability under high mobility.

The rest of this paper is organized as follows: Section
Il reviews related work on Al-based routing protocols.
Section Il details the proposed DRL-SOA protocol design
and optimization objectives. Section IV presents simulation
setup and performance evaluation. Finally, Section V
concludes the paper with insights and future research
directions.

Related works
Optimizing Cluster Head (CH) and Relay (RLY) node selection
is essential to improve energy efficiency, scalability, and

adaptability in Wireless Sensor Networks (WSNs) and
Internet of Things (IoT) environments. Recent research
has applied fuzzy logic, reinforcement learning (RL), and
metaheuristic optimization techniques to enhance routing
performance under dynamic and resource-constrained
conditions.

Fuzzy logic-based methods such as the Type-2 fuzzy-
based CH election scheme proposed by (Adnan, M., Ahmad,
T, and Yang, T, 2021) have demonstrated improved energy
efficiency and reliability. However, their practical deployment
in large-scale networks is limited due to high computational
complexity and poor scalability. Reinforcement learning has
emerged as a promising technique for adaptive routing.
(Bhimshetty, S., and lkechukwu, A\V., 2024) employed Deep
Q-Networks (DQN) for energy-aware routing in loT, enabling
real-time decision-making based on environmental
conditions.

Nain, Z., Musaddiq, A., Qadri, Y.A., Nauman, A., Afzal,
M.K.,and Kim, S.W., (2021) introduced RIATA, a reinforcement
learning-based routing protocol that uses trickle timers to
reduce control overhead and improve Packet Delivery Ratio
(PDR), though it does not address CH or RLY node selection.

Ahmad, S., Khan, S., Khan, K.S., Naeem, F., & Tariq,
M. (2023) proposed a deep reinforcement learning
approach for resource allocation in IRS-assisted networks.
While it enhances packet delivery and offers adaptive
learning, it primarily targets IRS scenarios rather than
core CH/RLY optimization in WSNs. L. Amudavalli, and
K. Muthuramalingam. (2024) proposed a location-based
energy-efficient routing protocol using the Teaching-
Learning Soccer League Optimization (TLSLO) algorithm
for WSNs. Their work demonstrates the potential of
metaheuristic optimization in improving clustering and
routing performance, which inspires our DRL-SOA approach
by emphasizing energy-aware CH selection and route
formation.

Nimmala, S., Gupta, N.S., Sena, PV., Chari, K.K., Pasha,
M.A., & Rambabu, B. (2025) applied DQN for smart energy
applications in WSNs, demonstrating strong energy
adaptability and learning-based optimization, but requiring
significant training time and coordination among nodes.

Metaheuristic algorithms are widely used due to their
global search capabilities and simplicity. Rajoriya, M.K., &
Gupta, C.P. (2023) implemented the Sailfish Optimization
Algorithm (SFO) for CH selection in Software-Defined
WSNs, achieving energy-aware multi-hop routing but facing
limitations in highly dynamic topologies. Panimalar, S., &
Jacob, T.P. (2024) developed a hybrid congestion-aware
routing system that combines Bee Colony Optimization with
Intelligent Butterfly Optimization to achieve load balancing.
However, the real-time adaptability of this method is
affected by increased system complexity.

Farag, H., & Stefanovi¢, C. (2021) presented an RL-based
congestion-aware routing protocol for dynamic loT
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networks. While their model adapts well to changing traffic
conditions, it lacks dedicated mechanisms for CH and RLY
node selection, which can reduce routing efficiency in dense
deployments.

Among bio-inspired algorithms, the Shrike Optimization
Algorithm (SHOA), proposed by AbdulKarim, H.K., &RRashid,
T.A. (2024), is notable for its balance between exploration
and exploitation, fast convergence, and low computational
overhead. SHOA is lightweight and suitable for real-time
WSN/loT applications, though its real-world validation
remains limited. Yasodha, V., & Janita, V.S. (2025) introduced
DOACAR, a Dingo Optimizer-based protocol designed for
congestion-and mobility-aware CH and RLY node selection.
While DOACAR demonstrates enhanced PDR and energy
efficiency, it lacks a learning mechanism to support dynamic
topology changes in real-time.

To address these limitations, the proposed DRL-SOA
framework integrates the learning ability of DRL [2, 3, 4,
5] with the optimization power of SOA by AbdulKarim,
H.K., & Rashid, T.A. (2024). DRL enables context-aware, real-
time routing decisions based on changing environmental
conditions, while SOA ensures efficient CH and RLY node
selection with minimal computational overhead. This hybrid
approach enhances energy efficiency, adaptability, and
congestion control, making DRL-SOA highly suitable for
scalable and dynamic loT environments. The advantages
and limitations of the discussed methods are summarized
in Table 1.

Proposed work
This research introduces DRL-SOA, a hybrid protocol
combining Deep Reinforcement Learning (DRL) with the

Shrike Optimization Algorithm (SOA) to enable energy-
efficient, congestion-aware, and secure routing in loT
networks. The system comprises three key modules: DRL-
based route learning, SOA-based cluster head (CH) and
relay node (RLY) optimization, and a trust-aware congestion
detection mechanism. The architecture ensures real-time
adaptability, efficient packet forwarding, and enhanced
network lifetime.

System Model

The dynamic and resource-constrained nature of Internet
of Things (IoT) networks necessitates intelligent routing
mechanisms that ensure efficient, reliable, and secure data
transmission. To meet these demands, this work proposes
a novel hybrid routing protocol, DRL-SOA, which integrates
Deep Reinforcement Learning (DRL) and the Shrike
Optimization Algorithm (SOA). The proposed protocol is
designed to adapt to topological changes, optimize energy
consumption, minimize congestion, and enhance routing
trustworthiness.

The loT network is modelled as a graph G(N,C),
where N={n,n, n,...n} denotes the set of sensor nodes,
and C represents the set of communication links between
node pairs (ni, nj) that lie within the coverage area A of
the loT environment. The transmission delay and the
physical distance between nodes influence each network
connection. Let S be the source node transmitting data to
a destination node D through a set of intermediate nodes
based on the link quality determined by inter-node distance
and network conditions. This is illustrated in Figure 1.

To ensure robust performance, the protocol employs
a Fitness Function (FF) that incorporates key network

Table 1: Comparative Summary of Recent Routing Protocols

Author & Year

Method

Advantages

Limitations

Adnan et al. (2021)

Bhimshetty & Agughasi
(2023)

Nain et al. (2021)

Ahmad et al. (2023)

Rajoriya & Gupta (2023)

Farag & Stefanovic (2021)

Panimalar & Jacob (2024)

Nimmala et al. (2025)

AbdulKarim & Rashid (2024)

Yasodha & Janita (2025)

Type-2 Fuzzy Logic

DQN-based Reinforcement
Learning

RIATA (RL + Trickle Timer)

DRL-IRS (Deep RL)

Sailfish Optimization (SFO)

RL-based Congestion-Aware
Routing

Bee Colony + Intelligent
Butterfly Optimization

DQN-based Routing for
Smart Energy

SHOA (Shrike Optimization
Algorithm)

DOACAR (Dingo Optimizer)

Energy-efficient, reliable

Learns optimal paths
dynamically

Low control overhead, high PDR

Improves packet delivery,
adaptive learning

Energy-aware CH selection,
efficient clustering

Supports dynamic environments
Load balancing, congestion-
aware routing

Energy adaptability, learning-
based routing

Fast convergence, lightweight,
global search

Congestion-aware, energy-
efficient, scalable

High complexity, scalability issues
Long training time, high computation

No CH/RLY optimization

High training complexity and resource
usage

Limited in dynamic topologies

Lacks CH/RLY selection, limited energy
awareness

Complexity in dynamic adaptation
Requires coordination and training time

Limited real-world validation

Needs learning mechanism for dynamic
networks
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parameters such as Link Stability Factor (LSF), Link Duration
Factor (LDF), Residual Energy, Available Bandwidth, Received
Signal Strength Indicator (RSSI), and Network Connectivity.
These parameters are used as weights in route selection
to fulfill application-specific Quality of Service (QoS)
requirements. Additionally, traffic is classified based on
priority to facilitate critical data delivery, while a trust-aware
mechanism is implemented to avoid unreliable nodes.

The DRL component enables the protocol to learn
optimal routing policies in real time by interacting with
the environment and updating decisions based on current
network states. In parallel, the SOA module enhances the
convergence of DRL by optimizing the selection of Cluster
Heads (CHs) and Relay Nodes (RNs) using a bio-inspired
strategy based on the shrike’s hunting and feeding behavior.
This combination ensures dynamic route optimization,
improved network lifetime, reduced control overhead, and
enhanced packet delivery.

Objective parameters evaluation

Link stability factor (LSF)

In the proposed approach, the Link Stability Factor (LSF) is
employed to dynamically adjust the learning rate (alpha)
in the Deep Reinforcement Learning model, thereby
contributing to the formation of more stable routes during
routing updates. This factor plays a pivotal role in making
informed and adaptive routing decisions under dynamic
network conditions.

Consider a communication link k=(a,b), where ke ,
and L represents the set of all active links. At a given time’
s,’, the positions of nodes a and b are denoted as (Xaya)
and (x: ,Y; ) respectively. At a subsequent time fs, =s; + ,
the updated positions of the nodes are (x},y;") and
(xi,yy") as obtained through periodic beacon exchanges.
The Euclidean distances between nodes a and b at times S;
and s;,; aredenotedas DT" (a,b) and DT* (a,b) respectively.
These distance variations are used to compute the LSF, which
reflects the temporal consistency of a link and guides the
routing protocol in selecting stable communication paths.

DT (a.8) = (xt = +(3 1) 1)

For a given communication link k=(a,b), the change in
connectivity distance is defined as:

[ Y P— St
° . o o A
o o . 5
[ P .
Selected Available
®cH ©RLY “pay Paths

Figure 1: Data communication in loT

‘ACD(k)‘ :‘DTS'*l (a,b)-DT* (a,b)‘ , where DT*(a,b)and DT* (a,b)
represent the Euclidean distances between nodes a and b
attimes’S;’and’ S;,; ' respectively. This metric quantifies
the variation in the physical distance between the nodes
over the interval As=s_, —s, . A smaller value of |ACD(K)|
indicates higher link stability, implying minimal relative
movement between the nodes. Conversely, a larger variation
reflects high mobility and unstable connectivity.

The Link Stability Factor (LSF) for the link k=(a,b) over
interval As is calculated as:

scoi)
k)=
AY( ) ACvaa)c (2)
Where,
ACD,, =2-4, -As and ‘4, ' denotes the maximum

node speed. A lower LSF value corresponds to more
consistent inter-node distance, signifying a more stable
and long-lasting link. This stability allows nodes to remain
within effective communication range for extended periods,
thereby reducing the frequency of route recompilations
and contributing to more efficient Q-learning updates with

minimal adjustments.

Link Duration Factor
The Link Duration Factor (LDF) quantifies the predicted or
observed time interval during which a communication link
between two loT devices remains intact before breaking. It
is governed by the relative speed and direction of motion
of the nodes involved. By evaluating LDF, routing protocols
can assess the link’s stability, enabling them to make
proactive decisions for maintaining seamless connectivity.
This minimizing the chances of packet loss during mobility-
induced transitions and ensuring higher Quality of Service
(QoS) in dynamic loT environments.

The quantity of variation in speed between two loT
devices in the direction of ‘' V,P,q " is given by,

w, = Tjsin B;cosT; — Ijsin6;cos T 3)
w, = r;sin8;sint; — rjsin 6;sin T @
Wy = [jCOS T; — I§COS T; )

Let ‘T3, I’ represent the average velocities of nodes i
and j, respectively. The directional variations between the
two nodes are described in the 3D space by angles 6i, 6j (in
the v—p plane) and Ti, Tj (in the z-axis). These parameters
capture node dynamics in spatial dimensions.

The duration of communication link ' T;; ' between nodes
i and j is defined as the period during which the squared
differences in their movement parameters (velocity and
direction vectors) remain within a predefined maximum
distance threshold d?

max *
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2 2 2
m=w, +Ww, +Ww, ©
n=2[wv(vi—vj)+wp(pi—pj)+wq(qi—qj)J 7
p:(vi_vj)2+(pi_pj)2+(qi_qj)2 )

By using the above derivations (6), (7) and (8),’ T; "is given by,

_ —n*4/n’ —4mp 9)
2m

Where, d2max :(vI -V, +WXT|J)Z + (p| -p; +prU)2 +(qI —q; +Wun)2

A larger LDF indicates a more stable link, thereby
improving the reliability of the route over time. This
prediction capability is essential for minimizing packet loss,
enabling smooth handovers, and maintaining a high Quality
of Service (QoS) in mobile loT environments.

Available Bandwidth

The primary goal of routing is to find suitable paths to
the destination, regardless of the current network load
or application requirements. However, this can lead to
network congestion when traffic is high, which reduces
overall performance. To maintain efficiency, it is important
to check the available bandwidth along the selected path.
Throughputis limited by the lowest bandwidth node along
theroute, also known as the bottleneck. Therefore, selecting
paths with higher available bandwidth ensures better data
transfer. Measuring residual bandwidth using the IEEE 802.11
MAC protocol is not straightforward. To overcome this, the
study uses a method from earlier research that calculates
the Channel Occupancy Factor (COF), which indicates how
much of the wireless channel is being used by mobile nodes
in the area.

Each node monitors radio activity continuously to
estimate the available bandwidth locally. This is done over
a fixed observation period, called (

Tyw /sec), which is set to 1 second. During this time,
each node records how long it uses the channel. To detect
whether the channelisidle or busy, two sensing techniques
are used. Physical sensing includes energy detection and
carrier sensing, while virtual sensing relies on the Network
Allocation Vector (NAV). The channel is considered idle when
the node is neither transmitting nor receiving, and the wait
time exceeds the NAV value. It is marked as busy if the node
is active or if the wait time is less than or equal to the NAV.
Based on these observations, the COF is calculated using
Equation (10), helping determine how much bandwidth is
still available for use.

COF@ngﬁﬁiEﬂ) (10)

BW

The channel’s busy state is calculated using Eq. (11) by using
Figure 2. where Uy, represents the time the channel is busy
due to each node i.

Busy channal
trc
Idle channal
| Tow |

Fig. 2: Channel Busy State

1busy (TBW ) = ZtBCi (H)

A windowed mean approach is employed to precisely
determine the COF. Hosts determine the available
bandwidth for fresh data transfers by multiplying channel’s
total bandwidth by proportion of idle time within a
specific timeframe. Available bandwidth can be concisely
represented by Eq. (12).

— AVBW

_1-COF(v 12
= =1-COF(v) (12)

AVpw (v)

Nodes Residual Energy (RE)

Residual energy (RE) of a node plays a dominant role in
mobile loT networks that showing the lifecycle of the
network and equilibrium of energy consumption. To
comprehend this equilibrium in the network, it is essential
to firmly regulate the nodes with more RE to contribute to
forwarding task. Ey, (i)

The factor "Ey,, (i)-Ey, (i)’ is included in the objective
function, wherein ‘Ey,, (i)’ and ‘Ey,(i)’ are initial and
RE of node (i) correspondingly. Concurrently, factor ’
B - S5 is included to mean RE of adjacent node.

NN - Amount of adjacent nodes of ‘i’ for ‘'TP," TP, -
Transmitting Power

Network Connectivity

Ensuring network connectivity is vital for regular network
functioning. By including this factor, it can be ensured
that the network remains connected after several game
iterations, when transmitting power at a node is reduced.
Connection function is given by,

1, Link connected (13)
NC(xi,xj):{ 0, Else

Objective function

Using the derived parameters for LSF, link duration quality,
energy consumption, bandwidth availability, RSSI, and
network connectivity, we form an objective function as
follows:

U= ( Eyi)

m) + o, X Tij(n) + a3 X (LFAs(k)) + oy X (14)

( NC(xi,xi)(n)) + a5 X ABWF(v)
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Where,
a,,4,,4,,4, and &, - Weight factors
The objective function of proposed work is,

OBJ  =¢” (15)

The objective function is limited to the range [0, 1]. Four
main criteria are considered when determining the objective
function for improving QoS of network. To reduce number
of retransmissions, node coverage and distance amid nodes
are considered, and to stabilize node energy, energy metric
is taken into consideration, while the success rate improves
the trustworthiness of data delivery.

Hybrid deep reinforcement learning and Shrike
Optimization Algorithm (DRL-SOA)

DRL background
Our complex routing problem aligns with decentralized
partially observable markov decision process (Dec-
POMDP) framework, commonly employed for collaborative
decision-making among multiple agents (Bhimshetty, S., &
Ikechukwu, AV., 2024). Dec-POMDPs model and optimize
agent behavior in uncertain environments by considering
theactions A, observations O, and states S of all involved
agents. A POMDP is characterized by a set of potential
system configurations (states), a range of possible actions,
and a collection of observable outcomes. Actions are
selected probabilistically based on a policy i,:0xA-[01]
(given by 0), influencing the system’s transition to a new
state governed by the transition function of the environment
T:SxA— S. This transition yields a reward based on
present state as well as action r:Sx.4 - R, as defined by
the reward function. Agents perceive the environment
through observations o:S8 —» O, which are functions of the
system state. An overview of DRL algorithms and schemes
used for developing hybrid routing policies for the problem
is provided in the ensuing sections.

Value Optimization and Deep Q-learning

To determine the ideal policy, Q-learning, an extensively
used model-free algorithm, is employed to estimate action-
value (AV) function for a given policy (V‘ (s,a)) . AV function
(Q-function) represents predictable cumulative discounted
reward obtained by implementing actions ‘a’ in state (s)
and consequently following optimal policy. Mathematically,
it is defined as:

Vi(s,a): = E[X=, A'r | s, = s,a, = a] (16)

Where, ' ¢ ' indicates discount factor and ' T’ indicates time
horizon The AV function is computed recursively as shown
below.

Vi(s,a) = Ey [r(s, a) + AE, ., [VH(s', a’)]] (17)

Recent DL models have enabled RL algorithms to
approximate the Q-function using Deep Neural Network
(DNN), i.e. v(s,a) = V(s,a;8), where ‘4’ represents a collection
of NN parameters (i.e. objective function parameters) Deep
Q-Network (DQN), as employed by Nimmala, S., Gupta, N.S.,
Sena, PV., Chari, K.K., Pasha, M.A., & Rambabu, B. (2025), is
used to learn the optimal AV function (v*) by reducing the
prediction loss.

Recent advancements in deep learning have empowered
reinforcement learning algorithms to approximate
Q-function using DNNs. This function represented as
V(s,a) = V(s,8;8) is parameterized by NN weights ‘&’ (LS, link
duration, available bandwidth etc.). A prominent technique
in this domain is Deep Q-Networks (DQN) [5]. DQN learns
ideal AV function by reducing the following loss:

2
(V*(s,a; 8) — (r + lrr;z;\x\_f*(s',a')))

Where, ‘V' is a target network with parameters which are
synchronized periodically with primary network’s parameters
(6) to enhance training stability. DQN further employs a large
experience replay buffer to store past experiences (s,a.1,s').
Ultimately, the ideal deterministic policy is determined by
selecting action with maximum Q-value for the given state
as shown below and derived once, optimal parameters §*
are determined.

g(8) = ]E(s,a,r,s') (18)

W (s) = argmaxV(s,a; §") (19)
aeA

Policy Optimizations

Policy gradient schemes offer an alternative approach to
directly optimize the policy parameters without explicitly
estimating the expected return. A stochastic policy p
(a,1s,) assigns probabilities to actions (a,) for state (S, )
parameterized by ‘6. The objective in policy optimization
is to increase the expected discounted return function by
adjusting these policy parameters.

J(8) = ]Eso,ao,sl,... [2?:0 )‘trt] (20)
RT

An experience sequence (or trajectory), denoted as ‘T’ is
composed of states, actions and rewards as 80:80:80-- \yith
so~po(so) and paa~s (1), s, ~T (s, 1s.a,). The discounted
return is ‘R,” for sequence ‘T, where ‘Po’ is initial state
distribution. The AV function (V“), state-value function (Vu)
as well as advantage function (A“) are given by:

V|J.(St! at) = E5t+1,at+1,...[zil‘=0 }Llrt+1] (21)

Fp(st) = ]Eat,St+1,...[Z,1F=O )\'lrt+1] (22)

Au(s,a) =V, (s,a) — F,(s) (23)
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Where,

ag~ Waclsgand s, ~7 (s, Is,,a,)

Shrike Optimization Algorithm (SOA)

The Shrike Optimization Algorithm (SOA) is a population-
based optimization technique inspired by the natural
behaviors of shrike birds, including nesting, reproduction,
and survival. In SOA, the population consists of multiple
nests, each containing two dominant parent birds and a set
of offspring called nestlings. These nests represent potential
solutions to optimization problems, where the best solution
within a nest is termed the local best, and the best across all
nests is identified as the global best. In this research, SOA is
applied to address a multi-objective optimization problem
involving the selection of Cluster Head (CH) and Relay
(RLY) nodes in Internet of Things (loT) networks (Figure 3).
Each bird or candidate solution represents a possible CH/
RLY configuration, evaluated using parameters such as
residual energy, Received Signal Strength Indicator (RSSI),
delay, link stability, and node connectivity. The local best
solution reflects the learned action based on Q-values,
while the global best represents the optimal strategy for
routing decisions. By simulating the shrike’s adaptive and
goal-directed behavior, SOA efficiently explores and exploits
the solution space to ensure energy-efficient and reliable
communication in dynamic loT environments.

SOA begins by initializing key parameters: the population
size (N), the number of nestlings per nest ( B),and anatural
influence factor (C). The algorithm starts with a population
of N nests, each containing two randomly generated
parent birds. Once the initial population is established, B
nestlings are generated for each nest. The population can
be represented by Eq. (24).

Pin  Pir
ni.l ni_l

Population (N) = : : (24)

|:pim pif:|
n; o

Fig. 3: Shrike Bird Life Cycle

Consider a population modeled as a pool of N nests, where
each nest nest, (Fori=1t0 N) represents a candidate solution
space. Each nest contains two parent solutions and a set of
nestlings, all of which contribute to the optimization process.
The parent solutions are initialized randomly within the
defined search boundaries using Eq. (25). Here, LB and UB
denote the lower and upper bounds of the solution space,
respectively, and rand is a uniformly distributed random
number

p, =LB+rand (UB—-LB) (25)

During the initialization process, two birds are created as
parents for each nest. The most physically fit bird will then be
selected as the dominant male (M, ) while the remaining
bird becomes the dominant female (F,,., ). In the breeding
phase, each nest will produce a total of B nestlings using Eq.
(26) and Eq. (27). The value of’Aegg]- "is generated from both
parents, and a random value (T') is chosen from the range
of -1 to 1. This value is then used to generate the ‘ stling},
where ‘1’ ranges from 1 to B.

Aegg; = (Fparent ~ Mparent ) tr (26)

nestling i = Foarent T4 €99, 27)

The young birds rely heavily on their parents for food,
with the male parent taking on a dominant role in feeding.
However, the male only feeds independently, while the
femaleis capable of both independent feeding and feeding
the nestlings if necessary. This system of dominant parental
feeding leads to the search for and exploitation of optimal
solutions. Each nest has two dominant parents, with the
first being considered the optimal solution and the second
being the backup. During the exploit phase, each nestling
will be fed by their parent, leading to the convergence to
the optimum solution. In the SOA algorithm, after initializing
the nests and defining the parameters for the parents, the
value for each dimension will be determined using Eq. (28),
based on their specific objective function.

r= e—2xt/ Thax

The ‘T’ parameter plays a critical role in feeding and is
calculated to enhance exploration. The dimension variable
for the "bird;" is denoted by ‘X, while ‘T stands for the
current iteration, and ‘T ' represents the maximum
allowed iteration for performing SOA. Utilizing Eq. (29), every
parent bird will be able to feed itselfw

A food | = bird XT

However, when it comes to nourishing their hatchlings, the
value of Afood is calculated differently according to Eq. (30).
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In this case, "bird,” represents the current state of the bird,
and ‘M,...." is the male parent responsible for providing food.
A food; =rx( bird; =M, )+ M e (30)
Even though the nestlings were not able to survive solely on
food provided by the male parent, they attempted to survive
by relying on the female parent and using Eq. (31), which is
equivalent to Eq. (30) but with r ranging from -1tol, and
incorporating sin(a), here ‘a’ is a constant factor.

A food j=TX ( bird i~ Foarent ) + sin(a) 31
Once the birds receive food, their positions are updated to
reflect the new state using the following equation,

bird{*! = birdj + Afood; (32)

This update ensures that each bird’s behavior adapts based
onits feeding outcome. The fitness of each bird is evaluated,
and the one with the highest fitness, denoted as ’bird;*l " is
selected to proceed to the next generation. However, not
all birds may successfully receive food in every iteration. If a
bird ("bird;") does not receive nourishment fromiits parent, it
still attempts to adapt by generating a new food value using
a randomized exploration mechanism.

This is achieved by using Eq. (32) to generate a new
amount of food ’Afoodj’. This equation considers arandomly
generated value, r, between the range of -1 to 1, as well as
a variable parameter (). This ‘a’ is generated randomly
between 0 and the dimension of the problem, and is used
to increase the element of randomness in the process.
By utilizing the sine of this variable, the values will vary
over time and lead to different solutions being explored.
Incorporating sin(a) introduces diversity into the search,
allowing the bird to explore solutions further away from
its current state.

This strateqgy is critical for escaping local optima and
enhancing the diversity of the search space. By randomly
searching and diverging from the local best solution, the
algorithm can generate new, potentially more optimal
solutions. The corresponding update equation is given by
Eqg. (33)

bird{** = birdf + (r x bird; + sin(«)) 33)

The SOA employs a unique strategy to achieve optimal
solutions. It maintains a record of the best solution found
at each nest as its local best. The overall population then
selects the best solutions from all local best to serve as the
global best. This approach effectively tackles the issue of
multiple modes by using a group of solutions. Each nest
contains several birds (solutions), and after a fixed number
of iterations ‘k’, old birds are replaced by new ones. However,
the two best birds in each nest are kept as parents to guide

the next generation. This helps the population gradually
move toward better solutions.

SOA is chosen for its excellent balance between
exploration and exploitation, mimicking shrike hunting
behaviour. It offers low computational overhead, making
it ideal for resource-constrained IoT nodes. The algorithm
achieves fast convergence with high accuracy, suitable for
real-time CH/RLY updates. It inherently supports multi-
objective optimization across energy, RSSI, delay, and
connectivity. Unlike other algorithms, SHOA remains robust
and adaptive in dynamic and mobile loT environments.

DRL Algorithm Based on SOA for Optimal Path
Selection

This section presents DRL-SOA, a hybrid routing algorithm
that integrates Deep Q-Learning with the Shrike
Optimization Algorithm (SOA) to achieve efficient path
selection in loT networks. In this framework, SOA supports
the reinforcement learning process by improving the
exploration of possible routes, leading to more effective
Q-value updates. By combining learning-based decision-
making with bio-inspired optimization, the proposed model
enhances adaptability, reduces energy consumption, and
improves routing performance in dynamic and resource-
constrained loT environments.

Deep Reinforcement Q-Learning Framework Based
on SOA

DRL-SOA’s architecture combines the strengths of deep
Q-learning and SOA to enhance overall performance of
the model. The use of SOA allows for dynamic exploration
and exploitation of the search space, while the deep
Q-learning component helps to make more informed
decisions by utilizing previously learned information. In
this architecture, each feature or state is represented by a
nest, and each participant (nest or node) is considered a
population in SOA. This allows for a parallel and collaborative
optimization process, further enhancing the model’s
performance. The Q-values in every nest represent the
learning actions, which are constantly updated based on
the fitness values determined by the environment. This
allows for the model to adapt and learn in a dynamic and
changing environment. Additionally, the incorporation of
SOA allows for the identification of the local and global best
sequences of learning actions, which further improves the
overall performance of the model. Through a fixed number
of iterations, DRL-SOA considers a new set of nests each time,
providing a continuous and dynamic learning process. This
process of updating and optimizing the learning actions
in a collaborative and parallel manner leads to a more
efficient and effective reinforcement learning model. As
a result, DRL-SOA can successfully handle complex and
highly dynamic environments, making it a powerful tool for
applications in fields such as robotics, gaming, and finance.
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Updating of Q-function based on SOA

This paper presents a novel approach for updating
Q-function by adopting the SOA algorithm. The focus is on
improving the overall performance of loT networks through
optimized route selection. The problem is considered as
an optimization problem, where the fitness value plays a
crucial role. To define the problem, the paper introduces two
sets, S={55,,---} and A={a,4,,.}, representing states
(si) and learning actions (a) respectively. The reward value
(r,) is computed based on objective function of node by
considering the present state (8, ) and learning action (4,).
State, action and goal state are defined (Ahmad, S., Khan,
S., Khan, K.S., Naeem, F,, & Tariq, M., 2023). As the system
moves from one state to another, the reward at a given
time is determined by the state transition function, which
isdefined as SxA - SxRwith 7 (s..a,) = (s;.,.1, ). In this function,
the system moves from state s ,, , obtaining a reward (1;) at
time (t). The aim is to identify ideal set of learning actions
A={4,4,,,,....} thatimproves total reward (R) based on FF
7. (A)= R(s,A) at time’t "

The total reward is the total rewards of the user, where
r, =201 . At time ‘t’, the learning agent obtains a reward
(t.) when performing a learning action (a ) in state (S, ). The
paper proposes DRL-SOA’s algorithm which combines deep
Q-learning with shrike optimization to find optimal set of
actions in state i.e., nest (S ). The objective is to maximize
total reward over an extended period of time leading to
better overall performance. Thus, the paper defines FF as
total reward for Q-values and its calculated as follows.

T
T, (A)=R(s,.A4) =", (34)
t=1
With T(s‘,a‘)=(s;+l,r') in one episode of learning, total
amount of learning actions is represented by ‘T". The
present reward for e learning action is denoted by ‘1, ",
while the discount factor which has a value between 0 and
1is represented by ‘¢".

The loT optimal route selection problem is solved by
finding ideal set of learning actions denoted by = {&,,4,.;»---}
based on their corresponding Q-values for the local best.
The global best is signified by state transition probability
of selecting a specific learning action () with regard to
S’ which lies in the range [0, 1]. To update solutions, a
propounded approach is utilized by comparing local
best solution got by every learning agent and global best
solution got by every learning agent by using a FF. Fitness
is calculated for nodes, and best target Q-value represented
by local best ‘bird;" * is found by respective ‘i’ learning
agent. The global best is determined by combining all the
local best solutions, representing the best target Q-value
for learning agents based on fitness of each node on route.
The Q-function for each learning agent is updated using
both local as well as global best target Q-values as defined
by proposed strategy is given by,
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bird };*’ =bird; +(r><b1rdj +sm(u)) (35)
n
- (S[-C&) _ : (St‘“‘[)
Gbird;;*" = > bird (36)
=

The variables ‘T’ and ‘a’ are used to represent random
numbers with values between -1 and 1, while the variable ‘o’
is used to represent a random function that has a range of 0
to the dimension. The variable ‘bird**”" signifies the Q-value
of the ‘i’ nest when it chooses to take action (a)in’S; at
‘t". The term "bird'?;*" signifies local best Q-value found by * i"
nest or learning agent. Global best Q-value is obtained by
considering all local best Q-values and using them in Eq. (35).

Proposed DRL-SOA algorithm

DRL-SOA is a routing method that combines deep
reinforcement Q-learning with the Shrike Optimization
Algorithm. As described in Algorithm 1, it starts by initializing
the Q-learning process with a value table ‘v(s,«) and a
random factor ‘r’, which simulates natural behaviour.
The r value, ranging from -1 to 1, represents variation in
environmental patterns like feeding. The learning agent
begins in an initial state (S, ). At each time step (t), it takes
an action (oct), moves to a new state (St+1), and receives a
reward (1;). This experience is saved in memory as a tuple
(e =(s. @, s.,)) for learning. For each user, DRL-SOA
performs three main steps are, (i) It calculates the cumulative
reward (R) using Eq. (33), (ii) It identifies the best local and
global Q-values based on the chosen actions (A), (iii) It
updates these Q-values using Eq. (35). This cycle repeats
over multiple iterations to find the best routes for each user
in the network.

Algorithm 1: Psudocode for Deep Reinforcement
Q-Learning Using Shrike Optimization

Input: Reward (R ) - Cumulative reward for‘V (s,a),
Local best reward (R") - Cumulative reward for ‘bird|**”
Global best reward (R¢) - Cumulative reward for
Gbird(s,a) = ibirdgjf“

Max _it- Maximum amount of iterations

Set replay buffer size

Set"V;(s. o)"and current state ‘bird """

for (every user)

for (j=1to Max _it)

for (every bird 1= 1,...,m)

Initialize's’

for(t=12,...,1)

Execute learning action’a

Determine next state’s,,, "and reward"r, ’

Store e, =(s,, a, 1,57, ) in buffer
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Compute cumulative reward R, using Eq. (34)
// Update local best target
if (R, <R orR == -1 ) then

birdgi‘l‘u‘) =V, (s, 0,)

R = R.

i i

end if

// Determine Nest’s global best target value
if (R, <R% orR% ==—1) then

G5, ) = Vi (st at)

R® = R,
end if
end for

Update local best target value ‘' bird\%*)" using Eq. (34)

Update global best target value'G!*”"by using Eq. (35)
end for
end for
end for

As shown in Algorithm 1, key parameters for the SOA such
as the number of nests N, maximum iterations Max .,
constant B, learning rate a, and exploration factor k are first
initialized. During each iteration, the cumulative reward
(or objective function) for each nest is calculated using Eq.
(34). If the current fitness is greater than local best target
(based on Q-values), it is assigned as the new local best
Q-value. Otherwise, it remains the same. Among all nests,
the one with the highest fitness becomes the global best.
The target positions of nests are updated using Equations
(35) and (36), guided by both local and global best Q-values.
The algorithm continues until the maximum number of
iterations is reached.

Results and Discussions

The proposed DRL-SOA (Hybrid Deep Reinforcement
Learning with Shrike Optimization) was tested using the
NS-3.23 network simulator to check its performance in
changing loT environments. The simulation settings, shown

in Table 2, were chosen to reflect real-world loT setups with
dense and mobile nodes. The main performance measures
were network lifetime, delay, energy use, packet delivery
ratio (PDR), routing overhead, and throughput.

DRL-SOA was compared with three well-known loT
routing protocols: RIATA, DRL-IRS, and DOACAR. RIATA
handles mobility but has high overhead and poor scalability.
DRL-IRS saves energy using reinforcement learning but
is computationally heavy. DOACAR works well in stable
networks but struggles in dynamic ones. Overall, DRL-SOA
showed better performance by using energy efficiently and
making smart routing choices, even in mobile and large-
scale networks.

Impact of Node Density on Protocol Performance

Network lifetime

DRL-SOA improves network lifetime by 40-60% compared to
RIATA and DRL-IRS by using energy- and bandwidth-aware
route selection. This prevents overuse of certain nodes and
spreads energy usage evenly. Unlike RIATA and DOACAR,
which lack adaptive energy control, DRL-SOA supports
longer operation in dense networks.

End-to-end delay

DRL-SOA achieved the lowest end-to-end delay of 0.65 ms
at 50 nodes, significantly outperforming RIATA, DRL-IRS,
and DOACAR. lts real-time learning quickly finds optimal
paths and avoids frequent retransmissions. This ensures
fast and stable communication, ideal for time-sensitive loT
applications (Figure 4).

Average Delay (in msec)

Delay (msec)

8 ]
6
1 -
Iy aill 0B
0
50 100 150 200

250
Number of Nodes
RIATA EDRL-IRS

DOACAR DRL-SOA

Figure 4: Average Delay (in msec)

Table 2: Presents the simulation setup details

Parameter Value Parameter Value
Simulator NS-3.23 Number of nodes 50 to 250
Topology Random Node placement Packet size 512 bytes
Mobility Model Random Waypoint (RWP) Packet rate 2Kb/sec
Speed 10 m/s to 50 m/s Routing Algorithm DRL-SOA
Pause Time 10 seconds Initial energy 100J
Dimensions 1500%1500 m Simulation Time 200Sec
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Energy consumption Routing Overhead (in bytes / sec)

DRL-SOA consumed just 2.34 Joules at 250 nodes, saving 30

up to 78.5% energy compared to RIATA (10.9 J). Its hybrid 13 25

design reduces control overhead and avoids frequent route £ 20

rediscovery. By factoring in energy and transmission cost, = 15

it ensures more efficient, longer-lasting communication gw r I _
(Figure 5). £, TL\ L -
Packet delivery ratio (PDR) ° 0 — — — — —
DRL-SOA achieves over 98% packet delivery ratio even at % 10 ‘ 0 0 0
50 m/s mobility, outperforming RIATA (85%) and DOACAR e e oaison
(90%) with a 13% gain over RIATA. Its predictive learning and

dynamic path adaptation help maintain reliable delivery. Figure 7: Routing Overhead (in bytes / sec)

This makes it highly effective in mobile and frequently

changing loT networks (Figure 6). Throughput (in Kbps)

o
S

Routing overhead

DRL-SOA records just 10.26 bytes/sec routing overhead at

250 nodes—60% lower than RIATA (25.56), 52% lower than | I
DRL-IRS (21.3), and 44% lower than DOACAR (18.4). This

efficiency comes from minimizing redundant route updates

and control packets. In contrast, other protocols rely on

frequent network broadcasts, increasing overhead under 0

mObI|Ity (Figure 7) 50 100 150 200 250

w
=]

=
=)

Throughput (in Kbps)
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—
o

Number of Nodes

Throughput RIATA =DRL-IRS DOACAR DRL-SOA
DRL-SOA maintains over 45 Kbps throughput at high
mobility, outperforming RIATA which falls below 35 Kbps Figure 8: Throughput (in Kbps)

(30% improvement). This is due to its stable path selection

and lower packet loss from congestion or link failures. Its
Energy Consumption (in Joules) learning-optimization hybrid ensures reliable, high-speed
transmission even in dynamic loT conditions (Figure 8).

—
[

glo Overall, DRL-SOA demonstrated superior performance
Es across all evaluated metrics, outperforming RIATA, DRL-IRS,
% 6 and DOACAR. The proposed protocol improved network
; 4 lifetime by up to 60%, reduced energy consumption by
i h L [ 78.5%, lowered delay by 78%, enhanced PDR by 13%,
0 . oo o o - decreased routing overhead by 60%, and increased
Number of Nodes throughput by 30%. These improvements validate the
RIATA EDRL-IRS DOACAR DRL-SOA effectiveness of integrating deep reinforcement learning
with the Shrike Optimization Algorithm to deliver a scalable,
Figure 5: Energy Consumption (in Joules) energy-efficient, and reliable routing solution for dynamic

loT environments.

Packet Delivery Ratio (%)
100~ Impact of Node Speed on Protocol Performance

® impacting routing. To test how well DRL-SOA handles this,
node speeds were adjusted from 10 m/s to 50 m/s to reflect
real-world movement. The Random Waypoint Mobility

Number of Nodes Model was employed, allowing nodes to move in random
RIATA o DRLARS DOACAR DRL-SOA directions, pause, and then move again. This setup creates
frequent changes in the network. By testing different speeds,
we assessed how well DRL-SOA adapts, manages delays, and

80 —

PacketDelivery Ratio (%0)

75

|1
95 — | [ In mobile loT systems, node mobility is a critical factor in real-
00 — | time environments, such as smart healthcare and vehicle
networks. When devices move, the network changes quickly,
100 150 200

250

Figure 6: Packet Delivery Ratio (%)
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remains reliable as movement increases. The results revealed
significant changes in performance as speed increased.

End-to-end delay

As node speed increased, all protocols showed higher delays
dueto longer route setup and queuing. DRL-SOA maintained
the lowest delay at 50 m/s (8.28 ms), outperforming RIATA
(20.91 ms), DRL-IRS (16.64 ms), and DOACAR (13.47 ms). Its
learning-based prediction helps avoid disruptions, reducing
delay by up to 60% (Figure 9).

Energy Consumption

DRL-SOA consumes 2.85 J at 50m/s, significantly lower than
RIATA (15.32 J), DRL-IRS (11.24 J), and DOACAR (7.93 J), and
an energy saving of 81%, 74.6%, and 64%, respectively. This
efficiency comes from DRL-SOA’s adaptive routing, which
considers residual energy and bandwidth. Its hybrid learning
strategy reduces unnecessary transmissions, conserving
energy even in high-mobility environments (Figure 10).

Packet Delivery Ratio (PDR)

As node speed increased, PDR dropped for all protocols
due to more route breaks and unstable links. DRL-SOA
maintained the highest PDR at 97%, outperforming RIATA
(83%), DRL-IRS (87%), and DOACAR (87%), showing a 16.8%
gain over RIATA. This reliability is due to DRL-SOA’s adaptive
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Figure 10: Energy Consumption (in Joules)
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Figure 11: Packet Delivery Ratio (%)
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Figure 13: Throughput

learning and bandwidth-aware routing, which helps predict
link failures and maintain stable paths (Figure 11).

Routing Overhead

As node speed increased, routing overhead rose for all
protocols due to frequent route rediscovery and updates.
DRL-SOA demonstrated the lowest overhead at 10.35
bytes/sec at 50 m/s, compared to 24.56 bytes/sec for RIATA,
representing a 57.8% reduction. This efficiency results from
DRL-SOA's selective control message exchange and policy-
based updates, which minimize unnecessary routing traffic
(Figure 12).

Throughput

Throughput dropped for all protocols as mobility increased
due to more packet loss and unstable routes. However,
DRL-SOA maintained the highest throughput at all speeds,
reaching 42.16 Kbps at 50 m/s. This outperforms RIATA
(25.56 Kbps), DRL-IRS (33.45 Kbps), and DOACAR (37.12 Kbps),
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showing a 64.9% improvement over RIATA. This success is
due to DRL-SOA's fast learning, efficient path selection, and
reliable data transmission (Figure 13).

Varying node speed simulations offer valuable insights
into routing performance under dynamic conditions.
DRL-SOA consistently delivers stability, energy efficiency,
and timely communication across mobility levels. This
resilience highlights its suitability for mission-critical and
latency-sensitive loT applications.

Conclusion

This paper presents and evaluates the DRL-SOA protocol,
which combines Deep Reinforcement Learning with
the Shrike Optimization Algorithm. Its performance was
tested against RIATA, DRL-IRS, and DOACAR in dynamic
loT environments. Key metrics such as packet loss, packet
delivery ratio (PDR), routing overhead, throughput, average
delay, and energy consumption were analyzed under
different node speeds and densities.DRL-SOA consistently
delivered better results than the compared protocols. It
achieved lower packet loss, higher PDR, reduced routing
overhead, better throughput, and shorter delays. Its
intelligent learning and energy-aware routing approach
helped maintain strong performance even in high-mobility
scenarios.

The protocol also showed significant improvements
in energy efficiency and scalability, making it well-suited
for real-time, resource-limited loT applications like smart
healthcare, vehicular networks, and industrial automation.

These findings highlight the potential of combining
deep learning with nature-inspired optimization techniques
to tackle the challenges of modern wireless communication.
In the future, the work will explore interference-aware
routing to improve reliability in dense networks. There
are also plans to develop hybrid optimization models and
extend the protocol to support multi-hop communication
and 6G-based loT systems.
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