Analysis and prediction of stomach cancer using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.16Keywords:
Stomach Cancer, Prediction system, Cancer, Analysis, stage prediction, survival predictionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer prediction and analysis systems offer aid in the management of patients and have been found to provide accurate forecasts for stage and survival prediction. This study presents a cancer prediction system developed using machine learning models and implemented with Streamlit. This system is capable of accurately predicting cancer stage onset along with chances of the patient’s onset of survival based on prior patient information. For predictive purposes, categories such as random forest and XGBoost were employed. The model achieved an effective accuracy of 85% for stage prediction and 97% for predictability of patients’ survival. This application includes a simple interface that healthcare professionals can employ to enter patient data and immediately make educated predictions. This paper illustrates the assistance these integrated systems provide clinicians and how they can ameliorate functional healthcare practices. In the future we are hopeful and aim towards further increasing the strength and efficiency of the system by enhancing the dataset used and additional predictive models.Abstract
How to Cite
Downloads
Similar Articles
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deneshkumar V, Jebitha R, Jithu G, Multistate modeling for estimating clinical outcomes of COVID-19 patients , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vandana, Ambrish Pandey, Comparative analysis of print contrast of hybrid modulated digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kirti Gupta, Parul Goyal, Modified-multi objective firefly optimization algorithm for object oriented applications test suites optimization , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 37 38 39 40 41 42 43 44 45 46 > >>
You may also start an advanced similarity search for this article.

