Analysis and prediction of stomach cancer using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.16Keywords:
Stomach Cancer, Prediction system, Cancer, Analysis, stage prediction, survival predictionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer prediction and analysis systems offer aid in the management of patients and have been found to provide accurate forecasts for stage and survival prediction. This study presents a cancer prediction system developed using machine learning models and implemented with Streamlit. This system is capable of accurately predicting cancer stage onset along with chances of the patient’s onset of survival based on prior patient information. For predictive purposes, categories such as random forest and XGBoost were employed. The model achieved an effective accuracy of 85% for stage prediction and 97% for predictability of patients’ survival. This application includes a simple interface that healthcare professionals can employ to enter patient data and immediately make educated predictions. This paper illustrates the assistance these integrated systems provide clinicians and how they can ameliorate functional healthcare practices. In the future we are hopeful and aim towards further increasing the strength and efficiency of the system by enhancing the dataset used and additional predictive models.Abstract
How to Cite
Downloads
Similar Articles
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Deepika, I. Antonitte Vinoline, The Impact of ERP Integration and Preservation Technology on Profit Optimization in Inventory Systems with Shortages and Deterioration , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepika M, Antonitte Vinoline I, An integrated inventory system for profit maximization considering partial demand satisfaction , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- N Archana, R Aravind Babu, Fault-tolerant reconfigurable second-life battery system using cascaded DC- DC converter , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mansi Harjivan Chauhan, Divyang D. Vyas, Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.

