Analysis and prediction of stomach cancer using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.16Keywords:
Stomach Cancer, Prediction system, Cancer, Analysis, stage prediction, survival predictionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer prediction and analysis systems offer aid in the management of patients and have been found to provide accurate forecasts for stage and survival prediction. This study presents a cancer prediction system developed using machine learning models and implemented with Streamlit. This system is capable of accurately predicting cancer stage onset along with chances of the patient’s onset of survival based on prior patient information. For predictive purposes, categories such as random forest and XGBoost were employed. The model achieved an effective accuracy of 85% for stage prediction and 97% for predictability of patients’ survival. This application includes a simple interface that healthcare professionals can employ to enter patient data and immediately make educated predictions. This paper illustrates the assistance these integrated systems provide clinicians and how they can ameliorate functional healthcare practices. In the future we are hopeful and aim towards further increasing the strength and efficiency of the system by enhancing the dataset used and additional predictive models.Abstract
How to Cite
Downloads
Similar Articles
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Sudha, B Indira, M Kalidas, Kalluri Rama Krishna, M. Jithender Reddy, G.N.R. Prasad, E-commerce in the B2B market: solutions for the point of sale , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V.Samuthira Pandi, B. R. Senthil kumar, M Anusuya, Annu Dagar, Synthesis and characterization of ZnO, ZnO doped Ag2O nanoparticles and its photocatalytic activity , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nupur Dogra, Shaveta Sharma, Impact of social networking sites on adolescent alienation and depression with special reference to Facebook usage , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 38 39 40 41 42 43 44 45 46 47 > >>
You may also start an advanced similarity search for this article.

