Analysis and prediction of stomach cancer using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.16Keywords:
Stomach Cancer, Prediction system, Cancer, Analysis, stage prediction, survival predictionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer prediction and analysis systems offer aid in the management of patients and have been found to provide accurate forecasts for stage and survival prediction. This study presents a cancer prediction system developed using machine learning models and implemented with Streamlit. This system is capable of accurately predicting cancer stage onset along with chances of the patient’s onset of survival based on prior patient information. For predictive purposes, categories such as random forest and XGBoost were employed. The model achieved an effective accuracy of 85% for stage prediction and 97% for predictability of patients’ survival. This application includes a simple interface that healthcare professionals can employ to enter patient data and immediately make educated predictions. This paper illustrates the assistance these integrated systems provide clinicians and how they can ameliorate functional healthcare practices. In the future we are hopeful and aim towards further increasing the strength and efficiency of the system by enhancing the dataset used and additional predictive models.Abstract
How to Cite
Downloads
Similar Articles
- Manu Narendra Dev Purohit, Deepika Yadav, Naresh Vyas, Impact of Environmental Factors on Fresh Water Snails and Cercarial Infection in Padamsar Pond at Jodhpur (Rajasthan) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rohit Mittal, Devinder Kumar, Harmel Singh Chahal, Antioxidant and Free Radical Scavenging Activity of Methanolic Extract of (Hordeum vulgare) Barley , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priyanka P, Sabu Sebastian, Haseena C., Bijumon R., Shaju K., Gafoor I., Sangeeth S. J., Multi-fuzzy set similarity measures using S and T operations , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Deepa ., Anju Panwar, Anju Panwar, Yougesh Kumar, Morphological Redescription of the Spinitectus notopteri Karve and Naik, 1951 from the Bronze Featherback Notopterus notopterus (Pallas, 1769) from Muzaffarnagar (U.P.), India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- U. Perachiselvi, R. Balasubramani, Funding agencies in Tamil Nadu State Universities: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 42 43 44 45 46 47 48 49 50 51 > >>
You may also start an advanced similarity search for this article.

