Eco-epidemiology of prey and competitive predator species in the SEI model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.37Keywords:
Eco-epidemiological, Susceptible exposed infected model, Predator-prey relationship, Disease transmission, Population dynamics.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The ecological epidemiology structure explores the relationship between disease and competitiveness in a predator-prey [22] (Vijaya S, J. J, 2017) structure. We create a mathematical model that includes a susceptible (S), exposed (E), and infected (I)[28][22] (Vijaya S, J.J, 2017)( S.P.Bera, A. M, 2015) subpopulation of prey, as well as a competing predator. The model Examines how disease transmission, predation rates, and natural population dynamics affect structure stability. The findings provide insights into illness prevalence and population levels, which could help researchers better understand disease outbreaks and the function of predators in disease control. Further studies should examine spatial aspects, environmental consequences, and predator behaviors.Abstract
How to Cite
Downloads
Similar Articles
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Bhavika Bhagyesh Lad, Sonam Mansukhani, Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

