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Eco-epidemiology of prey and competitive predator species in
the SEI model

R. Sivakumar”, S. Vijaya

Abstract

The ecological epidemiology structure explores the relationship between disease and competitiveness in a predator-prey [22] (Vijaya
S, J. J, 2017) structure. We create a mathematical model that includes a susceptible (S), exposed (E), and infected (1)[28][22] (Vijaya S,
J.J,2017)(S.PBera, A. M, 2015) subpopulation of prey, as well as a competing predator. The model Examines how disease transmission,
predation rates, and natural population dynamics affect structure stability. The findings provide insights into illness prevalence and
population levels, which could help researchers better understand disease outbreaks and the function of predators in disease control.
Further studies should examine spatial aspects, environmental consequences, and predator behaviors.

Keywords: Eco-epidemiological, Susceptible exposed infected model, Predator-prey relationship, Disease transmission, Population
dynamics.

MSC: 92D30 (Mathematical Models in Population Biology), 92E05 (stability of dynamical structures), 34C25 (Ordinary differential

equations with discontinued right-hand sides)

Introduction
Eco-epidemiology examines the relationship between
ecological relationships and disease dynamics within a
community. In this sense, a predator-prey mechanism
affected by an illness in the prey population presents an
intriguing topic of study. This study looks at a scenario in
which a contagious disease divides a prey species into three
subpopulations: susceptible (S), exposed (E), and infected
() (Vijaya S, J. J, 2017)(S. P. Bera, A. M, 2015). The predator
species is considered a competitor, preying on susceptible,
exposed, and infected people.

The purpose of this project is to create a mathematical
model that represents the population Mechanism of
susceptible, exposed, and infected prey and predator
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species (Vijaya S.J.J, 2017; Samin Akhtar, Sahabuddin, 2021).
This model will include disease transmission rate, predation
rate, and natural growth/mortality rates for each population.
By analyzing the model, we want to learn how the existence
of the disease and the predator population affect each other
and the overall stability of the structure (Vijaya S. J. J, 2016;
Gimmelli, Giacomo, 2015).

Prey species are classified into three sub-populations:
susceptible (S), exposed (E), and infected (1) (Vijaya S. J. J,
2017; Vijaya S. J. J, 2016). Individuals with characteristics
susceptible to the disease can contract it, become exposed,
and become infected. The illness may impact the prey’s
growth rate and survival. Predator species compete for
the same prey habitats. The predator’s predation rate may
change between susceptible and infected prey, depending
on predator preference and prey sensitivities.

This introduction examined the disease’s peculiar
features, predator functional responses (how predation rate
varies with prey density), and the potential consequences
of this complex relationship between ecology and
epidemiology. This form is a susceptible-exposed-infected
relationship employing Holling type Il functional response
(Nawaj Sarif & Sahabuddin Sawardi, 2021) using various
working methods, which is quite intriguing.

Mathematical Modelling

The organized model is formed in the same way as
the mathematical model. In this section, some basic
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244 Sivakumar and Vijaya

The Scientific Temper. Vol. 15, special issue-2

assumptions are made: (i) Let x represent the population
density of the prey, y represent the population density of
the first susceptible predator, E represent the population
density of the third exposed predator, and z represent the
population density of the second infected predator at time t.

dx
E:x(r—ax—cly—czz—c4E)
d—E:E(ﬂy+az—c4E+d2)
dt

Y _
dt
dz

dt

y(-az—cz+cx—d,)
=z(ay+ex—cy—d,)

With beginning circumstances.

X(0)=0,E(0)>0,y(0)>0,z(0)>0

Some basic assumptions are
In time t, x represents the population density of the prey,

y represents the population density of the first Susceptible

predator, E represents the population density of the third

exposed predator, and z represents the population density
of the second infected predator.

e r— represents the prey species’ inherent growth rate.

e a- represents the rate of competing prey species.
a.¢ are The rate at which the susceptible and infected
predators capture prey, respectively (Vijaya S & Rekha
E, 2017) (Vijaya S & J. J, 2017) (S. P. Bera, A. M, 2015)

« ¢5,¢5 The conversion rates for the susceptible and
infected predators as a result of consuming prey (Vijaya
S & Rekha E, 2017; Vijaya S & J. J, 2017; S. P. Bera, A. M,
2015)

« d,.d, represent overcrowding in the susceptible and
diseased predators, respectively (Sabah Ali Rahi & Raid
Kamel Naji, 2024).
¢, is the speed at which the susceptible predator is
captured by the infected predator (Xin-You Meng, Ni-Ni
Qin, Hai-Feng Huo, 2021).

C¢ Indicates the rate at which the infected predator is
captured by the susceptible predator (Xin-You Meng,
Ni-Ni Qin, Hai-Feng Huo, 2021).

« a represents the power of infection between the

diseased and susceptible predators.

(3 is the rate at which susceptible individuals (s) get

exposed (E) through contact with infected individuals.

Positiveness and Bounded of Theorems

Theorem 3.1
The equations (2.1) are always non-negative. Then, all

possible structure (Vijaya S & J. J, 2017) solutions (2.1) were
positive.

Considering the very first equation (2.1) of the entire
structure, we obtain

i x(r-ax-c1 y-C, Z-C, E)

%: O (XY, ) veeerrerereenns (3.1) (Vijaya S & Rekha E,2016)

Where
O(xy,z) =x(r-ax-c, y-c, z-c, E) (Vijaya S & Rekha E, 2016; Russell
L.Herman, 2013)

Taking integrating in the area [0,t] yields (Vijaya S & J.
J,2017)

X(t): X(O) Ol >0Vtasx(0)20............ (32) (Victor Henner,
Tatyana Belozerova & Mikhail Khenner, 2019)

Next, take the 2nd set of equations (2.1) structure, where
(Vijaya S &J.J,2017)

d—E:E(ﬂy+az—c4E+d2)

dt

(fi—f:y(y,z)dt .................... (3 3)
Where

y(y,z)dt :E(ﬂy+az—c4E+d2)
Taking integrating in the area [0,t] yields (Vijaya S &J.J,2017)

E() =E©) Jivad >0ViasE(0)>0............ (3.4)

Next, take the 3rd set of equations (2.1) structure
whereby (Vijaya S & J.J,2017)

%: y(-az—c,z+cx—d,)
%=(p(x,z)dt .................... (3.5)
Where

o(x,z)dt =y(-az—c,z+c;x—d,)

Taking integrating in the area [0,t] yields[22] (Vijaya S
& J.J,2017)

Y(t) = Y(0) o4 >0Vias¥(0)20............ (3-6)

Next, take the 4th set of equation (2,1) structure whereby
[22] (Vijaya S &J.J,2017)

d:
d—j:z(ay+csx—c6y—d2)
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Where

+( x,y) =

Taking integrating in the area [0,t] yields[22] (Vijaya S &
J.J,2017)

Z(t)=Z(0) ¢* ) >0VtasZ(0)20............ (3.8) (Vijaya S &
Rekha E,2016)

As the outcome, we can conclude that all structure (2.1)
results are always positive.

z(ay+csx—c6y—d2)

Theorem 3.2
The structure trajectory (2.1) is bound.

Let (I=X+E+Y + Z) and examine its time derivative
along the solution path of (2.1)[22] (Vijaya S &J.J,2017) (Vijaya
S & Rekha E,2017)

dl dx dE dy dz

—_— =t —+——+—

dt dt dt dt dt

Now %erlsrx—a1x2+px+pE+py+pz—zdl—zdz
Where

pisa positiveconstant forr,+ p—ax=0p—d, >20p—d, >0given > 0.

There exists to such that t=>¢,

%+pl£m+ e,ifm:min{err1 ,p—dl,p—dz}
a

Hence

%(le'”’) < (m+ e)e”’

(m+1)

~Plizto)* o (- efl(t—to)

= 1(1)<1(t,)e

putting t —> 0 then letting e — 0

1imsupl(t)£

—x

A

On the starting condition, the structure (2.1) is bound.

Analytical solution of critical points

The steady-state equations[22] (S. Vijaya, J. J, 2017) provide
the equilibrium point for the parametric model (S. P. Bera,
A. M, 2015) (2.1).

& E_ D % After performing the calculation, we obtain

dt dt dt dt
both the trivial and non-trivial equilibrium points (S. P. Bera,
A. M, 2015) (Vijaya S & Rekha E, 2017).
«  The trivial equilibrium (S. Vijaya, J. J, 2017) points of the

{x=0, E=0, y=0, z=0} this all prey-predator absents state

of equilibrium always exists.

« Both susceptible-infected predator equilibrium points
{ X = E,E:O,y:O,z:O}this equilibrium point prey is available, susceptible
predator, Exposed predator, and infected predator are
unavailable.

+ Infected predator free equilibrium point {x=

-2 -0 this equilibrium point, prey is present
susceptlble predator is available and Exposed, and the
infected predator is unavailable.

. Susceptible predator-free equilibrium point {x=
Lop-0y-0:="% ““thlseqwhbnum point: prey is available,
susceptlble and Exposed predator is unavailable and
infected predator is present (Vijaya S & Rekha E, 2016)

« Exposed predator-free equilibrium point {x=
ﬁ,E 2224 y—0z-0; this equilibrium point prey is
present exposed predator is available and susceptible,
and infected predator is unavailable.

« Interior equilibrium points are {x = x",E=E",y = y',z=2"}

Where,

d’EO
¢

rey—ad, ree;—acd,  ree,—acd,  Pey+dye,

X =
c (X C,C4 ¢,
re, — fBad, arc,—ad, rc,c,—ad
E= Bre, - pad, 4 3 1 TCGs Lid,
S (&1 GG
y= ~oret aad, rec,c;—cyad,
GG 663
_arc;—aad, cd, cre;—cgad,
7= Fra-aad, od_cre,—cad, g

GG G GG

The structure of the nonlinear differential equation (2.1) of
Jacobian matrices is (S.Vijaya, J. J, 2017)

2ax-cy-c,z—c,E+r —cx —C,X 0
J = cx —az-cz—d, ay+cz—cy+py Py+az
0 ay CZ=CeZ az-c,y
0 PE aE py+az-c,y-d,

Structure of the Stability Analyser

Theorem 5.1
The trivial equilibrium point (0,0,0,0) of the structure (2.1) is
a saddle point (Vijaya S & Rekha E, 2017; S. Vijaya, J. J, 2017).

Proof
The variance for the Jacobian matrices is (Vijaya S & Rekha
E, 2017)
r 0 O 0
0 -d 0 0
J, =
0 0 0 0

“The eigenvalues are 4=r>0,4,=-d,<0,4,=0,4,=—-d,
<0. One eigenvalue is positive and two are negative with
condition »>0,—-d, <0,—d, <0. Therefore, the state of the
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equilibrium point (0,0,0,0) is called a saddle point”(Ranjit
Kumar Upadhyay & Satteluri R. K lyengar, 2019; S.Vijaya, J.
J,2017)
Theorem 5.2
Both Susceptible -Infected predator-free equilibrium point
x= —,E=0,y=0,z=0}

a
of the structure (2.1) is stable, provided that a(Nayyereh

Babakordi, Hamid R. Z. Zangeneh & Mojtaba Mostafavi
Ghahfarokhi, 2019)

Proof
The variant for the Jacobian matrices of
*VCI *VCZ
o e ore
a a
J, = 5 d, AR
a
0 0 o0

So eigenvalues are 4 =-r(0,4,=4d,)0,4 =0,4,=d, >0. only if r>0,
a d,>cr, ,ad, > c;r, Therefore, the given equilibrium point
is stable.

Theorem 5.3

Infected predator-free equilibrium point {x= %,Eﬂy:@FO}
of the structure of equation (2.1) is locally asymptotically
Secure, assuming that

a ad, +cc;d, +reseq > acgd, +arc, +ced,

Proof
The variations of the Jacobian matrices are

Js=
*26510!1 _ ad;rcs +r *'210:1 *fiﬂfz 0
& 3 3 3 ad; —7c
g P e R Ll ()
8 ' €163 © GG adi i7'03
o a(adz;rcg) o —54( oo )
13
ad, —1c;3 ad; —1¢3
0 0 0 ﬁ’( €105 )764( €105 )
The corresponding eigenvalues are:
. — d,
The eigenvalues are 4 S22 B ys0,0,=dy 50,4, 20,2,
G 5}

:,B[M] —c, [MJ.henceﬁ1 and A, havenegativereal parts. A, = Owiththe condition
G5 GG

thata ad, +cc,d, +reseg > acgd, + arc, +cc5d,

The structure is locally asymptotically stable.

Theorem 5.4
Susceptible predator-free equilibrium points

d. res—ad.
= 2 E=0,y=0,z="2""2
{X o y pa

is locally asymptotically stable, assuming that a
ad, +ac,d, +c,c,d, > reg + e res +cyesd,

Proof
The variant for the Jacobian matrices is

The Scientific Temper. Vol. 15, special issue-2
Is
*Zc‘ldz v adZ; CSr+ 5 *‘:251 *izfz 0
5 s ) s ) s res —ad,
% 7a(1c5—ad2)7c4 (rcs—adz) 4 ( s )
_ [ C2Cs €2Cs res — ad,
0 0 c (—TC5 — ad2> a( C2Cs )
s €205
rcg —ad,
0 0 0 a( €05 ) *dz

The corresponding eigen values are 4 -2 . o .o ek ).
a[%}m:m:a[%]d: <0. Here A, A, hasnegativereal parts. A,
=0 withthecondition that that aad, +ac,d, +c,cd, > reg +e,res +e,cid,
The structure is locally asymptotically stable.

Theorem 5.5
Susceptible predator-free equilibrium point {x=
4 JE= M,y =0,z =0} islocally asymptotically stable .
[N c,
Proof:
The variants for the Jacobian matrices are
72ad2764[ﬁy+d2}r -cd, —ed,
cy (A cy cy 0
oy d, &sdy 0
Js= [N [ 0
0 0 0
0 ﬂ[ﬂyﬂ&j a[ﬁywzj 4
c c

The corresponding eigenvalues are

A :L‘ldz_q[M}w(o,,@ =d)0,2,=0,2,=d, >0
G

Cy

—2ad,

A= +By+d,+r(0.2,=d,)0,2,=0,4,=d, >0

Therefore, the structure is stable in the local asymptotic sense
(Santosh Biswas, Sudip Samanta & Joydev Chattopadhyay,
2017)

Theorem 5.6

The equilibrium point within the interior{x=x* E=E*, y=y*,
z=7*} is asymptotically stable in the local sense (Vijaya S &
Rekha E, 2016).

Proof
The variations of the Jacobian matrices are (Vijaya S & Rekha
E, 2016)

Nll N12 N13 Nl4

J = N21 sz st N24
‘ N31 N32 N33 N34
N41 N42 N43 N44
Where,

N =-2a re;—ad, | [ rec—acd, | (rees—acyd, | [ Peytdie, |
: G 6 663 G4

—are, +aad, —re,cy —c,ad, arc;—aad, | cd, cgre,—cqad,
¢ -c, +21
G GG

GG

d)-c re, —ad, B re; —ad, e re; —ad, +d
’ ) ady GG ac z

QG
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N = [}’(:3—adI ]_[l‘clcz —ac,d, J_[rczc3 —ac,d, j_{ﬂc4y+dzc4} N, =p —arc, +oad, re,c, —ad,c, +
2 =76 = -
ac GG 1=} G4 “ (NN [N

No——c [rcs—adl] [rclq—acldl] [rczcsfaczdlj [ﬂ04y+d264j
13- "% - - -
66 66 66 4 o arcy; —oad, _‘_csd1 cs'c; —cqad, d
GiC3 G €G3 ’
Ny, =0
—arc, +oad, re,c, —ad,c,
N.ozelTG —ad, rec, —acyd, re,cy —acyd, pe,y+dyc, Cy - +d,
0=6 - - - €263 GG
ccy [ €04 ¢,
are,—aad, | cd, cie,—cad [ are;—aad, | cd,  cge;—ciad, iy . .
Nf*"[[ ]*T ”’J*[( ] ’1] The corresponding eigenvalues are
A =2 re, —ad, re,c; —acyd, re,c; —acyd,
e — -—<a - -
N, =a —arc;+aad, | (ree;—ade, ‘e, re;—ad, | [ rec —acd, | ¢ ¢c e,
) C1e] C1e] GG GG
Pey+dye, | | —are;+aad, —rec; —cyad,
re,cy — ac,d, Pey+d,e, —arc, +aad, re,c;—ad,c, ¢
- -¢ : - c c,C
[ XA c, ¢4 (XA 4 273
B —arc, +aad, re,e, —ad,c, c arc, — aadl + CSdl _GG — céadl
- - 2
66 G Gy Cy CC
N, = [—arg +aad, j_{r@g —adc, ]+a [arc3 —aad, J+ e —ad e —ad e —ad
2 39 3“4 3 4%
e, e o d)-c, +p +a +d,
GG GG GG '
csd, cgre; —cqad,
P arc,—aad, | cd, cre; —cgad,
G GGy A =-a +—=— -d, |-
GG G GG
Ny, =0 arc; —aad, N cd, cgre; —cgad, d
C4 - - 7%
GG G GG
N =gl oGt aad, | [ re,e; —ade,
2= e e A=c arc, —oad, N csdy  cgre; —cgad, _d |-
273 23 ’ CICS C3 CICS ’
arc,—aad, | cd, cgre,—cqad, d
Ny=¢|| ————|+————"———d, |-
a6 G a6 arc,—aad, | c¢d, cge,—cqad,
N ae 7o ae
arc,—aad, | cd, cgre; —cqad, 173 3 173
[ I I A T Ly
c,C C c,C
163 3 163
—are; +aad, re,c, —adc,
=0 - +
GG 6
arc,—aad, | cd, cgre,—cqad,
N34=a[ 3 1]+51_63 6 1_d2_
cc c cc
1 3 3 o (Otrc3 —aad, ]Jr csd,  cgre; —cqad, d
&4 -d, |-
a6 G aé;
arc, —aad csd, cgre, —cqad
04[ 3 1]+51_53 6 1—d2
cc c cc
1%3 3 173 —arc, +aad, re,c; —ad,c,
“ [ c,C - (N td
N41 :0 2¥3 2-3
The characteristic equation is »,(2)=84+8,2* +B4+8,
pre,—pPad, arc,—ad, rc,c;—ad,
N,=p + - +d,
G [N G Where,
B =1, BZ:—(n133+m22+m,,) 1 By =—(omyymyy =y myymy, 0y = My + 1,0, ) ’
re,— fad, arc,—ad, rc,c;—ad
Ny,=«a pre, - fad, + : L3 L+d, By = my oy g + 1y 1y s, 1y, 1y, sy

GG G0 GG
3Ty 1T 3T Ty + 31T, T
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Routh Hurwitz criteria, all the eigenvalues[22] of J, contain
elements with negative real parts (Vijaya S & Rekha E,2017)

B >0

B.>0

B,B,B,> B+ BB,
Thus, given the structure of nonlinear differential equations

(2.1) is locally stable near the non-trivial equilibrium
(Saranya S, Vijaya S,2022)( point {x=x* E=E* y=y*, z=z*} if
conditions are stated (Smith KF, A.-W. K, 2009).

Computational Modeling

The form of the nonlinear differential equation (2.1) for

numerical solution.

First we determine the variables of the structure[33] as
2 =(a =Lr=10,a=1,¢ =1l,c,=1¢c,=12,¢, =1,¢,=10,¢, =1,d, =1,d, =1).
Then the starting condition satisfied (x(0)=0, E(0)=0,
y(0)=0, z(0)=10)(Christropher R Dishop,2019).The
infected predator population only available (see Graph
1) is the periodic point at 3.67879350770605. The
infected predator population is decreasing due to the
absence of a prey population (Vijaya S & Rekha E, 2017;
S.P.Bera, Y. A., 2012).

If we determine the variables as 21 of the structure [31],
as mentioned above, the starting condition satisfies
with (x(0)=0, E(0)=1, y(0)=0,z(0)=0). The exposed
predator population is available (see Graph 2), which
is the periodic point at 0.367879356307219 and the
susceptible predator population is decreasing due to
the absence of a prey population (Vijaya S & Rekha E,
2017;S.P.Bera, Y. A, 2012).

. If we determine the variables as p, of the structure[31],
as mentioned above, the starting condition satisfies
with (x(0)=0, E(0)=0, y(0)=1,z(0)=0). The Susceptible
predator population is available (see Graph 3), which
is the periodic point at 0.367879356307219 and the
Exposed predator population is decreasing due to the
absence of a prey population (Vijaya S & Rekha E, 2017).
If we determine the variables as o, of the structure as
mentioned above, the starting condition satisfies with
(x(0)=1, E(0)=0, y(0)=0,2(0)=0). The prey population is
available (see Graph 4), which is the periodic point at
9.99591738061742 and the prey population is increasing
due to the absence of a predator population (Vijaya S
& Rekha E, 2017).

- If we determine the variables as o of the structure as
mentioned above, the starting condition satisfies with
(x(0)=0, E(0)=0.2, y(0)=0.2,z(0)=0.5). The Susceptible-
Exposed-Infected predator population is available
(see Graph 5), and the Susceptible-Infected Predator
population is decreasing due to the absence of a prey
population (Vijaya S & Rekha E, 2017).

« If we determine the variables as o, of the structure as

mentioned above, the starting condition satisfied[30]
with (x(0)=0, E(0)=0.1, y(0)=0.2,z(0)=0). The susceptible-
exposed population is decreasing due to the absence

of a prey population (see Graph 6) (Vijaya S & Rekha E,
2017).

Now we take the variables as p, of the structure as
mentioned above, the starting condition satisfies with
(x(0)=1.0, E(0)=0, y(0)=0.1,2(0)=0). From Graph 7, we
can see that Relationships take place between prey
and susceptible predator species (Vijaya S, J. J, 2017). (
Kefeng wang& Feiyue Ye, 2015).

Now we take the variables as O, of the structure as
mentioned above, the starting condition satisfies with
(x(0)=1.0, E(0)=0.1,y(0)=0,z(0)=0). From Graph 8, we can
see that Relationships take place between prey and
exposed predator species (Vijaya S, J. J, 2017; Kefeng
wang & Feiyue Ye, 2015)

Now, we take the variables as 0, of the structure[33] as
mentioned above, the starting condition satisfies with
(x(0)=0.1, E(0)=0, y(0)=0,z(0)=1).From Graph 9, we can
see that Relationships take place between prey and
infected predator species (Vijaya S, J. J, 2017). (kefeng
wang & Feiyue Ye, 2015)

Now, we take the variables as o, of the structure[33] as
mentioned above, the starting condition satisfies with
(x(0)=0.15, E(0)=0.15, y(0)=0.15,z(0)=0.15). From Graph
10, we can see that Relationships take place between
prey and both Susceptible -Exposed -Infected predator
species (Vijaya S, J. J, 2017).

If we determine the variables of the structure as
p=(a=1,08,02,0,r=5a=1,¢,=lc,=1¢,=5,,=l,¢,;=5,¢,=1,d, =1,d, =1). Th
e starting condition satisfied (x(0)=0.3, E(0)=0.3,
y(0)=0.3, z(0)=0.3),( x(0)=1, E(0)=1, y(0)=1, z(0)=1) for
both Susceptible-Exposed-Infected predator and
prey population[24] of the time series(see Graph
11,12,13,14,15,16,17)[22] (Christropher R Dishop,2019)
(Vijaya S & Rekha E,2017).

If we determine the variables of the structure as
p=(a=0,05Lr=5a=l¢=1c,=lc,=5¢,=1¢=5¢=ld =,d,=1). T
he starting condition satisfied (x(0)=0.25, E(0)=0.5,

Eco-Epidemiological Model with Infected Predator

—— Infected (1) predator

Population

[} 10 20 a0 40 50
Time

Graph 1: The infected predator populations
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Population

y(0)=0.5, z(0)=0.25),(

x(0)=0.5, E(0)=0.5, y(0)=0.5,

z(0)=2) ,( x(0)=1, E(0)=0.5, y(0)=0.5, z(0)=1.5) ,( x(0)=1.7,
E(0)=0.5, y(0)=0.5, z(0)=1.2) for both Susceptible-
Exposed-Infected predator and prey population[24] of
the phase plot(see Graph 18,19,20)[22] (Christropher R
Dishop,2019) (Vijaya S & Rekha E,2017).

Eco-Epidemiclogical Model with Exposed Predator
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Discussion and conclusion

The eco-epidemiological model takes into account the
population dynamics of both prey species (represented by
susceptible-exposed-infected individuals) and predator
species(Vijaya S & Rekha E, 2017). Infection dynamics
alter prey dynamics (for example, susceptible individuals
become exposed and infected). Predator dynamics are
impacted by prey availability, which might fluctuate due to
infection-related mortality or behavioral changes in prey
species. Prey and predator populations interactin a complex
way. Infection in prey can influence predator fitness and
population dynamics.

Predators’ hunting behavior or energy expenditure may
change in response to the incidence of infection in prey
species. The eco-epidemiological model, which includes
prey species, susceptible-exposed-infected dynamics,
and predator species, provides important insights into the
dynamics of infectious ilinesses in ecological structures. The
model improves our knowledge of eco-structure resilience
and stability by considering both direct effects (for example,
disease-induced mortality) and indirect effects (for example,
changes in predator behavior as a result of prey health).

Key results include the ability of disease outbreaks in
prey populations to alter predator dynamics, emphasizing
the interdependence of species throughout eco-structures.
This knowledge is critical for controlling wildlife diseases,
conserving biodiversity, and forecasting ecological reactions
to environmental change. Additional research could look
into complexities like multi-species Relationships and spatial
dynamics to improve management tactics and maintain
long-term eco-structure health.

In short, eco-epidemiological models provide a powerful
framework for investigating the complex links between
infectious diseases and animal populations, helping advance
ecological theory and practical conservation initiatives.
We suggested and analyzed an eco-epidemiological
model based on a prey-predator model with SEI sickness
in the prey population and susceptible-exposed-infected
predators( Subrata Dey, Dhiraj Kumar Das&S. Ghorai, Malay
Banerjee,2024). The structure is observed to be positive and
limited, with no more than six trivial, disease-free, non-trivial
equilibrium positions. Graphs 1, 2, and 4 show that diseased
predator populations decrease in the absence of prey while
prey populations increase (Graph 3). Graphs 7-14 show
the relationship between prey and susceptible, infected
predator species.
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