
Abstract
 The ecological epidemiology structure explores the relationship between disease and competitiveness in a predator-prey [22] (Vijaya 
S, J. J, 2017) structure. We create a mathematical model that includes a susceptible (S), exposed (E), and infected (I)[28][22] (Vijaya S, 
J.J, 2017)( S.P.Bera, A. M, 2015) subpopulation of prey, as well as a competing predator. The model Examines how disease transmission, 
predation rates, and natural population dynamics affect structure stability. The findings provide insights into illness prevalence and 
population levels, which could help researchers better understand disease outbreaks and the function of predators in disease control. 
Further studies should examine spatial aspects, environmental consequences, and predator behaviors.
Keywords: Eco-epidemiological, Susceptible exposed infected model, Predator-prey relationship, Disease transmission, Population 
dynamics.
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Introduction
Eco-epidemiology examines the relationship between 
ecological relationships and disease dynamics within a 
community. In this sense, a predator-prey mechanism 
affected by an illness in the prey population presents an 
intriguing topic of study. This study looks at a scenario in 
which a contagious disease divides a prey species into three 
subpopulations: susceptible (S), exposed (E), and infected 
(I) (Vijaya S, J. J, 2017)(S. P. Bera, A. M, 2015). The predator 
species is considered a competitor, preying on susceptible, 
exposed, and infected people.

The purpose of this project is to create a mathematical 
model that represents the population Mechanism of 
susceptible, exposed, and infected prey and predator 
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species (Vijaya S. J. J, 2017; Samin Akhtar, Sahabuddin, 2021). 
This model will include disease transmission rate, predation 
rate, and natural growth/mortality rates for each population. 
By analyzing the model, we want to learn how the existence 
of the disease and the predator population affect each other 
and the overall stability of the structure (Vijaya S. J. J, 2016; 
Gimmelli, Giacomo, 2015).

Prey species are classified into three sub-populations: 
susceptible (S), exposed (E), and infected (I) (Vijaya S. J. J, 
2017; Vijaya S. J. J, 2016). Individuals with characteristics 
susceptible to the disease can contract it, become exposed, 
and become infected. The illness may impact the prey’s 
growth rate and survival. Predator species compete for 
the same prey habitats. The predator’s predation rate may 
change between susceptible and infected prey, depending 
on predator preference and prey sensitivities.

This introduction examined the disease’s peculiar 
features, predator functional responses (how predation rate 
varies with prey density), and the potential consequences 
of this complex relationship between ecology and 
epidemiology. This form is a susceptible-exposed-infected 
relationship employing Holling type II functional response 
(Nawaj Sarif & Sahabuddin Sawardi, 2021) using various 
working methods, which is quite intriguing. 

Mathematical Modelling 
The organized model is formed in the same way as 
the mathematical model. In this section, some basic 
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assumptions are made: (i) Let x represent the population 
density of the prey, y represent the population density of 
the first susceptible predator, E represent the population 
density of the third exposed predator, and z represent the 
population density of the second infected predator at time t.

( )1 2 4
dx x r ax c y c z c E
dt

= − − − −

( )4 2
dE E y z c E d
dt

β α= + − +

( )4 3 1
dy y z c z c x d
dt

α= − − + −

( )5 6 2 dz z y c x c y d
dt

α= + − −       …………. (2.1)

With beginning circumstances. 

X(0) ( ) ( ) ( )0, 0 0, 0 0, 0 0 E y z≥ ≥ ≥ ≥
Some basic assumptions are 
“In time t, x represents the population density of the prey, 
y represents the population density of the first Susceptible 
predator, E represents the population density of the third 
exposed predator, and z represents the population density 
of the second infected predator.
• r→ represents the prey species’ inherent growth rate. 
• a→ represents the rate of competing prey species.
• 1 2 ,c c  are The rate at which the susceptible and infected 

predators capture prey, respectively (Vijaya S & Rekha 
E, 2017) (Vijaya S & J. J, 2017) (S. P. Bera, A. M, 2015)

• 3 5 ,c c  The conversion rates for the susceptible and 
infected predators as a result of consuming prey (Vijaya 
S & Rekha E, 2017; Vijaya S & J. J, 2017; S. P. Bera, A. M, 
2015)

• 1 2 ,  d d represent overcrowding in the susceptible and 
diseased predators, respectively (Sabah Ali Rahi & Raid 
Kamel Naji, 2024).

• 4c  is the speed at which the susceptible predator is 
captured by the infected predator (Xin-You Meng, Ni-Ni 
Qin, Hai-Feng Huo, 2021).

• 6c  Indicates the rate at which the infected predator is 
captured by the susceptible predator (Xin-You Meng, 
Ni-Ni Qin, Hai-Feng Huo, 2021).

• α represents the power of infection between the 
diseased and susceptible predators.

• β is the rate at which susceptible individuals (s) get 
exposed (E) through contact with infected individuals.” 

Positiveness and Bounded of Theorems

Theorem 3.1
The equations (2.1) are always non-negative. Then, all 

possible structure (Vijaya S & J. J, 2017) solutions (2.1) were 
positive.

Considering the very first equation (2.1) of the entire 
structure, we obtain

dx
dt

 
= x(r-ax-c1 y-c2 z-c4 E)

dx
dt

= Φ (x,y,z)dt………………(3.1) (Vijaya S & Rekha E,2016)

Where            
Φ(x,y,z) = x(r-ax-c1 y-c2 z-c4 E) (Vijaya S & Rekha E, 2016; Russell 
L.Herman, 2013)

Taking integrating in the area [0,t] yields (Vijaya S & J. 
J, 2017)

X(t)= x(0) ( )Ö , ,   x y z dte∫  ( ) ( )0    0 0 3.2t as x> ∀ ≥ …………  (Victor Henner, 
Tatyana Belozerova & Mikhail Khenner, 2019) 

Next, take the 2nd set of equations (2.1) structure, where 
(Vijaya S & J.J,2017) 

( )4 2
dE E y z c E d
dt

β α= + − +

( ) ( ) , .. 3.3dE y z dt
dt

γ= ………………

Where 

( ) ( )4 2,  y z dt E y z c E dγ β α= + − +
Taking integrating in the area [0,t] yields (Vijaya S & J.J,2017)

E (t) = E(0) ( )ã ,   y z dte∫  ( ) ( )0    0 0 3.4t as E> ∀ ≥ …………

Next, take the 3rd set of equations (2.1) structure 
whereby (Vijaya S & J.J,2017)

( )4 3 1
dy y z c z c x d
dt

α= − − + −

( ) ( ) , .. 3.5dy x z dt
dt

ϕ= ………………

Where 

( ) ( )4 3 1,  x z dt y z c z c x dϕ α= − − + −
Taking integrating in the area [0,t] yields[22] (Vijaya S 

& J.J,2017)
Y(t) = Y(0) ( )ö ,   x z dte∫  ( ) ( )0    0 0 3.6t asY> ∀ ≥ …………

Next, take the 4th set of equation (2,1) structure whereby 
[22] (Vijaya S & J.J,2017)

( )5 6 2 dz z y c x c y d
dt

α= + − −
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( ) ( ) ÷  x, y dt .. 3.7dz
dt

= ……………………

Where 

( )÷  x, y =   ( )5 6 2 z y c x c y dα + − −
Taking integrating in the area [0,t] yields[22] (Vijaya S & 
J.J,2017)

Z(t)= Z(0) ( ) ÷  x,y   dte∫  ( ) ( )0    0 0 3.8t as Z> ∀ ≥ ………… (Vijaya S & 
Rekha E,2016)

As the outcome, we can conclude that all structure (2.1) 
results are always positive.

Theorem 3.2
The structure trajectory (2.1) is bound.

Let ( l = X + E + Y + Z ) and examine its time derivative 
along the solution path of (2.1)[22] (Vijaya S & J.J,2017) (Vijaya 
S & Rekha E,2017)

dl dx dE dy dz
dt dt dt dt dt

= + + +

Now 2
1 1 2

dl l rx a x x E y z zd zd
dt

ρ ρ ρ ρ ρ+ ≤ − + + + + − −

Where 

1 1 1 2      0 0 0 0.is a positiveconstant for r a x d d givenρ ρ ρ ρ+ − ≥ − ≥ − ≥ ∈>

There exists to such that t 0t≥

1
1 2

1

,  min  , , rdl l m if m d d
dt a

ρρ ρ ρ
 +

+ ≤ +∈ = − − 
 

Hence ( ) ( )l td le m e
dt

ρ ρ≤ +∈

( ) ( )
( ) ( )

( )0
0

 

0 (1
m t

t t l t tl t l t e e
ρ

ρ
+

− − +
− −⇒ ≤ −

putting t→  0 then letting 0∈→

( )limsup
t

ml t
ρ→∞

≤

On the starting condition, the structure (2.1) is bound.

Analytical solution of critical points
The steady-state equations[22] (S. Vijaya, J. J, 2017) provide 
the equilibrium point for the parametric model (S. P. Bera, 
A. M, 2015) (2.1). 

0 .dx dE dy dz
dt dt dt dt

= = = =  After performing the calculation, we obtain 
both the trivial and non-trivial equilibrium points (S. P. Bera, 
A. M, 2015) (Vijaya S & Rekha E, 2017).
• The trivial equilibrium (S. Vijaya, J. J, 2017) points of the 

{x=0, E=0, y=0, z=0} this all prey-predator absents state 

of equilibrium always exists.
• Both susceptible-infected predator equilibrium points 

{ x = , 0, 0, 0} his equilibrium point prey is available,  susceptibl  r E y z t e
a

= = =

predator, Exposed predator, and infected predator are 
unavailable.

• Infec ted predator-free equil ibrium point {x= 
3 11

3 1 3

, 0,  , 0}rc add E y z
c c c

−
= = =  this equilibrium point, prey is present 

susceptible predator is available and Exposed, and the 
infected predator is unavailable.

• Susceptible predator-free equilibrium point {x=
5 22

5 2 5

, 0, 0, }rc add E y z
c c c

−
= = =  this equilibrium point: prey is available, 

susceptible and Exposed predator is unavailable and 
infected predator is present (Vijaya S & Rekha E, 2016)

• E xposed predator-free equil ibrium point {x=
2 2

3 4

 , , 0, 0}d y dE y z
c c

β +
= = =  this equilibrium point prey is 

present exposed predator is available and susceptible, 
and infected predator is unavailable.

• Interior equilibrium points are {x = * *,x E E= , y = * *, }y z z=

Where,
 

3 1 1 3 1 1 3 2 2 1 4 2 4

3 1 3 2 3 4

rc ad rc c ac d rc c ac d c y d cx
c c c c c c

β− − − +
= − − −

3 1 3 1 4 3 1
2

1 3 2 3 1 3

        rc ad rc ad rc c adE d
c c c c c c

β β α− − −
= + − +

Y= 3 1 4 3 4 1

2 3 2 3

rc ad rc c c ad
c c c c

α α− + −
−

Z= 3 1 5 1 6 3 6 1

1 3 3 1 3

rc ad c d c rc c ad
c c c c c

α α− −
− −  - 2d

The structure of the nonlinear differential equation (2.1) of 
Jacobian matrices is (S.Vijaya, J. J, 2017)

J = 
1 2 4 1 2

3 4 1 4 6

5 6 4

2 0
                      

0
                        0                                                                           

ax c y c z c E r c x c x
c x z c z d y c z c y y y z

y c z c z z c y
E E

α α β β α
α α

β α

− − − − + − −
− − − + − + +

− −

4 2      y z c y dβ α

 
 
 
 
 

+ − − 

Structure of the Stability Analyser

Theorem 5.1
The trivial equilibrium point (0,0,0,0) of the structure (2.1) is 
a saddle point (Vijaya S & Rekha E, 2017; S. Vijaya, J. J, 2017).

Proof 
The variance for the Jacobian matrices is (Vijaya S & Rekha 
E, 2017)

1
1

2

0 0 0
0 0          0
0 0 0 0

0     0      0      

r
d

J

d

 
 − =
 
 − 

“The eigenvalues are 1 2 1 3 4 20, 0, 0,r d dλ λ λ λ= > = − < = = −

<0.  One eigenvalue is positive and two are negative with 
condition 1 20, 0, 0r d d> − < − < . Therefore, the state of the 
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equilibrium point (0,0,0,0) is called a saddle point”(Ranjit 
Kumar Upadhyay & Satteluri R. K Iyengar, 2019; S.Vijaya, J. 
J, 2017)

Theorem 5.2
Both Susceptible -Infected predator-free equilibrium point 

{x= , 0, 0, 0}r E y z
a

= = =

of the structure (2.1) is stable, provided that a(Nayyereh 
Babakordi, Hamid R. Z. Zangeneh & Mojtaba Mostafavi 
Ghahfarokhi, 2019)

Proof
The variant for the Jacobian matrices of 

1 2

3 5
12

2

0
      0           

00 0 0
 0      0     0           

rc rcr
a a

rc rcdJ
a a

d

− − − 
 
 =  
 
 
  

So eigenvalues are 1 2 1 3 4 20, 0, 0, 0r d dλ λ λ λ= − = = = > . only if r>0, 
a 1 3 2 5 , d cr ad c r> > . Therefore, the given equilibrium point 
is stable.

Theorem 5.3
Infected predator-free equilibrium point {x= 3 11

3 1 3

, 0, , 0}rc add E y z
c c c

−
= = =  

of the structure of equation (2.1) is locally asymptotically 
Secure, assuming that 
a 1 1 3 2 3 6 6 1 3 1 5 1.d c c d rc c ac d rc c c dα α+ + > + +

Proof
The variations of the Jacobian matrices are

The corresponding eigenvalues are:
The eigenvalues are 31 1 3 1 31

1 2 1 3 4 4 1 2 3
3 3 1 3 1 3

2 0, 0, 0,  .        . 0    rcad ad rc ad rcad r d c hence and havenegativereal parts withthecondition
c c c c c c

λ λ λ λ β λ λ λ−    − −−
= − + > = > = = − =   

   
 

31 1 3 1 31
1 2 1 3 4 4 1 2 3

3 3 1 3 1 3

2 0, 0, 0,  .        . 0    rcad ad rc ad rcad r d c hence and havenegativereal parts withthecondition
c c c c c c

λ λ λ λ β λ λ λ−    − −−
= − + > = > = = − =   

   

that a 1 1 3 2 3 6 6 1 3 1 5 1.d c c d rc c ac d rc c c dα α+ + > + +

The structure is locally asymptotically stable. 

Theorem 5.4 
Susceptible predator-free equilibrium points
{x = 5 22

5 2 5

, 0, 0, }rc add E y z
c c c

−
= = =

is locally asymptotically stable, assuming that a 

2 4 2 2 3 2 5 4 5 2 5 1.d ac d c c d rc c rc c c dα + + > + +

Proof
The variant for the Jacobian matrices is

The corresponding eigen values are 2 5 5 2 5 2 5 22
1 2 4 3 4 2

5 5 2 5 2 5 2 5

2 0, 0, 0,rad c rc ad rc ad rc adad r c d
c c c c c c c c

λ λ α λ λ α
     − − − −−

= + + < = − − < = =     
     

2 5 5 2 5 2 5 22
1 2 4 3 4 2

5 5 2 5 2 5 2 5

2 0, 0, 0,rad c rc ad rc ad rc adad r c d
c c c c c c c c

λ λ α λ λ α
     − − − −−

= + + < = − − < = =     
     

<0. Here 1 2 3,     . 0    has negativereal parts withtheconditionλ λ λ =

1 2 3,     . 0    has negativereal parts withtheconditionλ λ λ = that that a 2 4 2 2 3 2 5 4 5 2 5 1.d ac d c c d rc c rc c c dα + + > + +  ∴
The structure is locally asymptotically stable.

Theorem 5.5 
Susceptible predator-free equil ibrium point {x=

2 2

3 4

 , , 0, 0}     .d y dE y z is locally asymptotically stable
c c

β +
= = =

Proof:
The variants for the Jacobian matrices are 

2 2 1 2 2 2
4

3 4 3 3

3 2 5 2
1

3 35

2

4

2                       
0

                         0
0

0 0 0

                                  0                                        

ad y d c d c dc r
c c c c

c d c dd
c cJ

y d y
c

β

β ββ α

 − + − −
− + 

 

=

 +
 
 

2
2

4

            d d
c

 
 
 
 
 
 
 
 
  +
  
   

The corresponding eigenvalues are 

2 2
1 4 2 1 3 4 2

3 4

2 0, 0, 0, 0ad y dc r d d
c c

βλ λ λ λ
 − +

= − + = = = > 
 

2
1 2 2 1 3 4 2

3

2  0. 0, 0, 0ad y d r d d
c

λ β λ λ λ−
= + + + = = = >

Therefore, the structure is stable in the local asymptotic sense 
(Santosh Biswas, Sudip Samanta & Joydev Chattopadhyay, 
2017)

Theorem 5.6
The equilibrium point within the interior{x=x*, E=E*, y=y*, 
z=z*} is asymptotically stable in the local sense (Vijaya S & 
Rekha E, 2016).

Proof
The variations of the Jacobian matrices are (Vijaya S & Rekha 
E, 2016)

          

11 12 13 14

21 22 23 24
6

31 32 33 34

41 42 43 44

  

     

N N N N
N N N N

J
N N N N

N N N N

 
 
 =
 
 
 

Where,

3 1 1 3 1 1 2 3 2 1 3 1 4 3 4 1 3 1 5 1 6 3 6 14 2 4
11 1 2

3 1 3 2 3 4 2 3 1 3 3 1 3

2 rc ad rc c ac d rc c ac d rc ad rc c c ad rc ad c d c rc c adc y d cN a c c
c c c c c c c c c c c c c

α α α αβ          − − − − + − − − −+
= − − − − − − + −          

          

3 1 1 3 1 1 2 3 2 1 3 1 4 3 4 1 3 1 5 1 6 3 6 14 2 4
11 1 2

3 1 3 2 3 4 2 3 1 3 3 1 3

2 rc ad rc c ac d rc c ac d rc ad rc c c ad rc ad c d c rc c adc y d cN a c c
c c c c c c c c c c c c c

α α α αβ          − − − − + − − − −+
= − − − − − − + −          

            - 

3 1 3 1 3 1
2 4

1 3 1 3 1 3

) rc ad rc ad rc add c
c c c c c c

β α
     − − −

− + +     
     

 

+ 2.d
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3 1 1 3 1 1 2 3 2 1 4 2 4
12 1

1 3 1 3 2 3 4

rc ad rc c ac d rc c ac d c y d cN c
c c c c c c c

β       − − − +
= − − − −       

      

3 1 1 3 1 1 2 3 2 1 4 2 4
13 2

1 3 1 3 2 3 4

rc ad rc c ac d rc c ac d c y d cN c
c c c c c c c

β       − − − +
= − − − −       

      

14 0N =

3 1 1 3 1 1 2 3 2 1 4 2 4
21 3

1 3 1 3 2 3 4

rc ad rc c ac d rc c ac d c y d cN c
c c c c c c c

β       − − − +
= − − −       

      

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
22 2 4 2

1 3 3 1 3 1 3 3 1 3

 rc ad c d c rc c ad rc ad c d c rc c adN d c d
c c c c c c c c c c

α α α αα
      − − − −

=− + − − − + − −               

3 1 4 3 1 4 3 1 1 3 1 1 2 3 2 1 3 1 4 3 1 4 3 14 2 4
23 5 6

2 3 2 3 1 3 1 3 2 3 4 2 3 2 3 2 3

 rc ad rc c ad c rc ad rc c ac d rc c ac d rc ad rc c ad c rc adc y d cN c c
c c c c c c c c c c c c c c c c c

α α α α α αβα β
                − + − − − − − + − − ++

= − + − − − − − +                                
4 3 1 4

2 3

rc c ad c
c c

    −
−            

3 1 4 3 1 4 3 1 1 3 1 1 2 3 2 1 3 1 4 3 1 4 3 14 2 4
23 5 6

2 3 2 3 1 3 1 3 2 3 4 2 3 2 3 2 3

 rc ad rc c ad c rc ad rc c ac d rc c ac d rc ad rc c ad c rc adc y d cN c c
c c c c c c c c c c c c c c c c c

α α α α α αβα β
                − + − − − − − + − − ++

= − + − − − − − +                                
4 3 1 4

2 3

rc c ad c
c c

    −
−            

3 1 4 3 1 4 3 1 1 3 1 1 2 3 2 1 3 1 4 3 1 4 3 14 2 4
23 5 6

2 3 2 3 1 3 1 3 2 3 4 2 3 2 3 2 3

 rc ad rc c ad c rc ad rc c ac d rc c ac d rc ad rc c ad c rc adc y d cN c c
c c c c c c c c c c c c c c c c c

α α α α α αβα β
                − + − − − − − + − − ++

= − + − − − − − +                                
4 3 1 4

2 3

rc c ad c
c c

    −
−            

3 1 4 3 1 4 3 1 5 1 6 3 6 1
24 2

2 3 2 3 1 3 3 1 3

rc ad rc c ad c rc ad c d c rc c adN d
c c c c c c c c c

α α α αβ α
       − + − − −

= − + + − −                

3 1 4 3 1 4 3 1 5 1 6 3 6 1
24 2

2 3 2 3 1 3 3 1 3

rc ad rc c ad c rc ad c d c rc c adN d
c c c c c c c c c

α α α αβ α
       − + − − −

= − + + − −                

31 0N =

3 1 4 3 1 4
32

2 3 2 3

rc ad rc c ad cN
c c c c

α αα
    − + −

= −         
3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1

33 5 2 6 2
1 3 3 1 3 1 3 3 1 3

 rc ad c d c rc c ad rc ad c d c rc c adN c d c d
c c c c c c c c c c

α α α α      − − − −
= + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
33 5 2 6 2

1 3 3 1 3 1 3 3 1 3

 rc ad c d c rc c ad rc ad c d c rc c adN c d c d
c c c c c c c c c c

α α α α      − − − −
= + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
34 2 4 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c adN d c d
c c c c c c c c c c

α α α αα
      − − − −

= + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
34 2 4 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c adN d c d
c c c c c c c c c c

α α α αα
      − − − −

= + − − − + − −               

41 0N =

3 1 3 1 4 3 1
42 2

1 3 2 3 1 3

 rc ad rc ad rc c adN d
c c c c c c

β β αβ
 − − −

= + − + 
 

3 1 3 1 4 3 1
43 2

1 3 2 3 1 3

rc ad rc ad rc c adN d
c c c c c c

β β αα
 − − −

= + − + 
 

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
44 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cN d c d
c c c c c c c c c c c c c

α α α α α αβ α
              − + − − − − + −

= − + + − − − − +                                 

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
44 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cN d c d
c c c c c c c c c c c c c

α α α α α αβ α
              − + − − − − + −

= − + + − − − − +                                 

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
44 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cN d c d
c c c c c c c c c c c c c

α α α α α αβ α
              − + − − − − + −

= − + + − − − − +                                 

The corresponding eigenvalues are 

3 1 1 3 1 1 2 3 2 1 3 1 4 3 4 1 3 1 5 1 6 3 6 14 2 4
1 1 2

3 1 3 2 3 4 2 3 1 3 3 1 3

2 rc ad rc c ac d rc c ac d rc ad rc c c ad rc ad c d c rc c adc y d ca c c
c c c c c c c c c c c c c

α α α αβλ =

          − − − − + − − − −+
− − − − − − + −          

          

3 1 1 3 1 1 2 3 2 1 3 1 4 3 4 1 3 1 5 1 6 3 6 14 2 4
1 1 2

3 1 3 2 3 4 2 3 1 3 3 1 3

2 rc ad rc c ac d rc c ac d rc ad rc c c ad rc ad c d c rc c adc y d ca c c
c c c c c c c c c c c c c

α α α αβλ =

          − − − − + − − − −+
− − − − − − + −          

          

3 1 1 3 1 1 2 3 2 1 3 1 4 3 4 1 3 1 5 1 6 3 6 14 2 4
1 1 2

3 1 3 2 3 4 2 3 1 3 3 1 3

2 rc ad rc c ac d rc c ac d rc ad rc c c ad rc ad c d c rc c adc y d ca c c
c c c c c c c c c c c c c

α α α αβλ =

          − − − − + − − − −+
− − − − − − + −          

          
 – 

3 1 3 1 3 1
2 4

1 3 1 3 1 3

) rc ad rc ad rc add c
c c c c c c

β α
     − − −

− + +     
     

+ 2.d

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
2 2 4 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c add c d
c c c c c c c c c c

α α α αλ α
      − − − −

= − + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
2 2 4 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c add c d
c c c c c c c c c c

α α α αλ α
      − − − −

= − + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
3 5 2 6 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c adc d c d
c c c c c c c c c c

α α α αλ
      − − − −

= + − − − + − −               

3 1 5 1 6 3 6 1 3 1 5 1 6 3 6 1
3 5 2 6 2

1 3 3 1 3 1 3 3 1 3

rc ad c d c rc c ad rc ad c d c rc c adc d c d
c c c c c c c c c c

α α α αλ
      − − − −

= + − − − + − −               

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
4 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

 rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cd c d
c c c c c c c c c c c c c

α α α α α αλ β α
              − + − − − − + −

= − + + − − − − +                                 

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
4 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

 rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cd c d
c c c c c c c c c c c c c

α α α α α αλ β α
              − + − − − − + −

= − + + − − − − +                                 

3 1 4 3 1 4 3 1 5 1 6 3 6 1 3 1 4 3 1 4
4 2 4 2

2 3 2 3 1 3 3 1 3 2 3 2 3

 rc ad rc c ad c rc ad c d c rc c ad rc ad rc c ad cd c d
c c c c c c c c c c c c c

α α α α α αλ β α
              − + − − − − + −

= − + + − − − − +                                 

The characteristic equation is ( ) 3 2
1 1 2 3 4B B B Bλ λ λ λ∧ = + + +

Where,
1 1B = , ( )2 33 22 11B m m m= − + + , 3 11 22 11 33 12 21 13 31 22 33 23 32(B m m m m m m m m m m m m= − − − + + − +3 11 22 11 33 12 21 13 31 22 33 23 32(B m m m m m m m m m m m m= − − − + + − + ) , 

4 11 22 33 11 23 32 12 21 33 13 23 31 13 21 32 13 22 31.B m m m m m m m m m m m m m m m m m m−= + + − +

4 11 22 33 11 23 32 12 21 33 13 23 31 13 21 32 13 22 31.B m m m m m m m m m m m m m m m m m m−= + + − +
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Routh Hurwitz criteria, all the eigenvalues[22] of J6 contain 
elements with negative real parts (Vijaya S & Rekha E,2017)

1 0B >

• B3>0
• B1B2B3> B3

2+ B1
2B4.

Thus, given the structure of nonlinear differential equations 
(2.1) is locally stable near the non-trivial equilibrium 

(Saranya S, Vijaya S,2022)( point {x=x*, E=E*, y=y*, z=z*} if 
conditions are stated (Smith KF, A.-W. K, 2009).

Computational Modeling
The form of the nonlinear differential equation (2.1) for 
numerical solution.
• First we determine the variables of the structure[33] as 

( )1 1 2 3 4 5 6 1 21, 10, 1, 1, 1, 12, 1, 10, 1, 1, 1 . r a c c c c c c d dρ α= = = = = = = = = = = =

Then the starting condition satisfied (x(0)=0, E(0)=0, 
y(0)=0, z(0)=10)(Christropher R Dishop,2019).The 
infected predator population only available (see Graph 
1) is the periodic point at 3.67879350770605. The 
infected predator population is decreasing due to the 
absence of a prey population (Vijaya S & Rekha E, 2017; 
S.P.Bera, Y. A., 2012). 

• If we determine the variables as 1ρ  of the structure [31], 
as mentioned above, the starting condition satisfies 
with (x(0)=0, E(0)=1, y(0)=0,z(0)=0). The exposed 
predator population is available (see Graph 2), which 
is the periodic point at 0.367879356307219 and the 
susceptible predator population is decreasing due to 
the absence of a prey population (Vijaya S & Rekha E, 
2017; S. P. Bera, Y. A, 2012).

•  If we determine the variables as 1ρ  of the structure[31], 
as mentioned above,  the starting condition satisfies 
with (x(0)=0, E(0)=0, y(0)=1,z(0)=0). The Susceptible 
predator population is available (see Graph 3), which 
is the periodic point at 0.367879356307219 and the 
Exposed predator population is decreasing due to the 
absence of a prey population (Vijaya S & Rekha E, 2017).

• If we determine the variables as 1ρ  of the structure as 
mentioned above, the starting condition satisfies with 
(x(0)=1, E(0)=0, y(0)=0,z(0)=0). The prey population is 
available (see Graph 4), which is the periodic point at 
9.99591738061742 and the prey population is increasing 
due to the absence of a predator population (Vijaya S 
& Rekha E, 2017).

• If we determine the variables as 1ρ  of the structure as 
mentioned above, the starting condition satisfies with 
(x(0)=0, E(0)=0.2, y(0)=0.2,z(0)=0.5). The Susceptible-
Exposed-Infected predator population is available 
(see Graph 5), and the Susceptible-Infected Predator 
population is decreasing due to the absence of a prey 
population (Vijaya S & Rekha E, 2017).

• If we determine the variables as 1ρ  of the structure as 

mentioned above, the starting condition satisfied[30] 
with (x(0)=0, E(0)=0.1, y(0)=0.2,z(0)=0). The susceptible-
exposed population is decreasing due to the absence 
of a prey population (see Graph 6) (Vijaya S & Rekha E, 
2017).

• Now we take the variables as 1ρ  of the structure as 
mentioned above, the starting condition satisfies with 
(x(0)=1.0, E(0)=0, y(0)=0.1,z(0)=0). From Graph 7, we 
can see that Relationships take place between prey 
and susceptible predator species (Vijaya S, J. J, 2017). ( 
Kefeng wang& Feiyue Ye, 2015).

• Now we take the variables as 1ρ  of the structure as 
mentioned above, the starting condition satisfies with 
(x(0)=1.0, E(0)=0.1,y(0)=0,z(0)=0). From Graph 8, we can 
see that Relationships take place between prey and 
exposed predator species (Vijaya S, J. J, 2017; Kefeng 
wang & Feiyue Ye, 2015)

• Now, we take the variables as 1ρ  of the structure[33] as 
mentioned above, the starting condition satisfies with 
(x(0)=0.1, E(0)=0, y(0)=0,z(0)=1).From Graph 9, we can 
see that Relationships take place between prey and 
infected predator species (Vijaya S, J. J, 2017). (kefeng 
wang & Feiyue Ye, 2015)

• Now, we take the variables as 1ρ  of the structure[33] as 
mentioned above, the starting condition satisfies with 
(x(0)=0.15, E(0)=0.15, y(0)=0.15,z(0)=0.15). From Graph 
10, we can see that Relationships take place between 
prey and both Susceptible -Exposed -Infected predator 
species (Vijaya S, J. J, 2017).

• If we determine the variables of the structure as 
( )1 1 2 3 4 5 6 1 21,0.8,0.2,0, 5, 1, 1, 1, 5, 1, 5, 1, 1, 1 .  r a c c c c c c d d Thρ α= = = = = = = = = = = =

e starting condition  satisfied (x(0)=0.3, E(0)=0.3, 
y(0)=0.3, z(0)=0.3),( x(0)=1, E(0)=1, y(0)=1, z(0)=1) for 
both Susceptible-Exposed-Infected predator and 
prey population[24] of the time series(see Graph 
11,12,13,14,15,16,17)[22] (Christropher R Dishop,2019) 
(Vijaya S & Rekha E,2017).

• If we determine the variables of the structure as 
( )1 1 2 3 4 5 6 1 20,0.5,1, 5, 1, 1, 1, 5, 1, 5, 1, 1, 1 .    r a c c c c c c d d Tρ α= = = = = = = = = = = =

he starting condition satisfied (x(0)=0.25, E(0)=0.5, 

Graph 1: “The infected predator populations
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Graph 5: Relationship of susceptible predator exposed predator and 
infected predator populations

Graph 6: Relationship of prey and susceptible predator populations

Graph 7: Relationship of prey and exposed predator populations

Graph 8: Relationship of prey and infected predator populations

y(0)=0.5, z(0)=0.25),( x(0)=0.5, E(0)=0.5, y(0)=0.5, 
z(0)=2) ,( x(0)=1, E(0)=0.5, y(0)=0.5, z(0)=1.5) ,( x(0)=1.7, 
E(0)=0.5, y(0)=0.5, z(0)=1.2)  for both Susceptible-
Exposed-Infected predator and prey population[24] of 
the phase plot(see Graph 18,19,20)[22] (Christropher R 
Dishop,2019) (Vijaya S & Rekha E,2017).

Graph 2: The exposed predator populations

Graph 3: The susceptible predator populations

Graph 4: The prey populations
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Graph 9: Relationship of prey and susceptible infected predator 
populations

Graph 10: Relationship of prey and susceptible exposed predator 
populations

Graph 11: Relationship of prey and susceptible infected predator 
populations

Graph 12: Relationship of prey and susceptible infected predator 
populations

Graph 13: Relationship of prey and susceptible exposed predator 
populations

Graph 14:  Relationship of prey and susceptible predator 
populations

Graph 15: Relationship of prey and infected predator populations

Graph 16: Relationship of prey and exposed predator 
populations
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Graph 17: Relationship of prey and susceptible-infected predator 
populations

Graph 18: Phase plot is asymptotically stable at 

Graph 19: Phase plot is asymptotically stable at 

Graph 20: phase plot is asymptotically at 

Discussion and conclusion
The eco-epidemiological model takes into account the 
population dynamics of both prey species (represented by 
susceptible-exposed-infected individuals) and predator 
species(Vijaya S & Rekha E, 2017). Infection dynamics 
alter prey dynamics (for example, susceptible individuals 
become exposed and infected). Predator dynamics are 
impacted by prey availability, which might fluctuate due to 
infection-related mortality or behavioral changes in prey 
species. Prey and predator populations interact in a complex 
way. Infection in prey can influence predator fitness and 
population dynamics. 

Predators’ hunting behavior or energy expenditure may 
change in response to the incidence of infection in prey 
species. The eco-epidemiological model, which includes 
prey species, susceptible-exposed-infected dynamics, 
and predator species, provides important insights into the 
dynamics of infectious illnesses in ecological structures. The 
model improves our knowledge of eco-structure resilience 
and stability by considering both direct effects (for example, 
disease-induced mortality) and indirect effects (for example, 
changes in predator behavior as a result of prey health).

Key results include the ability of disease outbreaks in 
prey populations to alter predator dynamics, emphasizing 
the interdependence of species throughout eco-structures. 
This knowledge is critical for controlling wildlife diseases, 
conserving biodiversity, and forecasting ecological reactions 
to environmental change. Additional research could look 
into complexities like multi-species Relationships and spatial 
dynamics to improve management tactics and maintain 
long-term eco-structure health.

In short, eco-epidemiological models provide a powerful 
framework for investigating the complex links between 
infectious diseases and animal populations, helping advance 
ecological theory and practical conservation initiatives. 
We suggested and analyzed an eco-epidemiological 
model based on a prey-predator model with SEI sickness 
in the prey population and susceptible-exposed-infected 
predators( Subrata Dey, Dhiraj Kumar Das& S. Ghorai, Malay 
Banerjee,2024). The structure is observed to be positive and 
limited, with no more than six trivial, disease-free, non-trivial 
equilibrium positions. Graphs 1, 2, and 4 show that diseased 
predator populations decrease in the absence of prey while 
prey populations increase (Graph 3). Graphs 7-14 show 
the relationship between prey and susceptible, infected 
predator species.
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