Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.04Keywords:
Juvenile delinquency, Offender treatment, The RNR model, Juvenile justice system.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Juvenile crime in India is a pressing issue that requires tailored rehabilitation approaches. This paper explores the application of the "Risk-Need-Responsivity (RNR) model" as a conceptual model for treating juvenile offenders within the Indian legal context. The study reviews correctional practices and highlights the need for structured offender treatment based on the 'RNR model's' core principles of 'risk,' 'need,' and 'responsivity.' Drawing on criminological theories and empirical evidence, the paper emphasizes the significance of addressing criminogenic factors to reduce recidivism. By analyzing existing literature on juvenile justice, the paper demonstrates how the RNR model, typically employed in Western contexts, can be adapted for India's socio-cultural environment to enhance the effectiveness of juvenile rehabilitation. The findings suggest that integrating RNR-informed interventions into the juvenile justice system can improve long-term rehabilitation outcomes and reduce re-offense rates among young offenders.Abstract
How to Cite
Downloads
Similar Articles
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. R. Raajpandiyan, Syed T. Hussainy, U. Rizwan, A bivariate replacement policy (T, N) under partial product process , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.