Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.04Keywords:
Juvenile delinquency, Offender treatment, The RNR model, Juvenile justice system.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Juvenile crime in India is a pressing issue that requires tailored rehabilitation approaches. This paper explores the application of the "Risk-Need-Responsivity (RNR) model" as a conceptual model for treating juvenile offenders within the Indian legal context. The study reviews correctional practices and highlights the need for structured offender treatment based on the 'RNR model's' core principles of 'risk,' 'need,' and 'responsivity.' Drawing on criminological theories and empirical evidence, the paper emphasizes the significance of addressing criminogenic factors to reduce recidivism. By analyzing existing literature on juvenile justice, the paper demonstrates how the RNR model, typically employed in Western contexts, can be adapted for India's socio-cultural environment to enhance the effectiveness of juvenile rehabilitation. The findings suggest that integrating RNR-informed interventions into the juvenile justice system can improve long-term rehabilitation outcomes and reduce re-offense rates among young offenders.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rohit Chettri, Prem Kumar N, Renoprotective effect of flavonoids in type-2 diabetes mediated-nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Arvind Kumar Tiwari, STABILITY IN THE EQUILIBRIUM POSITION OF AN EXTENSIBLE CABLE-CONNECTED TWO SATELLITE SYSTEM UNDER PERTURBATIVE FORCE IN CIRCULAR ORBIT , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.