Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.04Keywords:
Juvenile delinquency, Offender treatment, The RNR model, Juvenile justice system.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Juvenile crime in India is a pressing issue that requires tailored rehabilitation approaches. This paper explores the application of the "Risk-Need-Responsivity (RNR) model" as a conceptual model for treating juvenile offenders within the Indian legal context. The study reviews correctional practices and highlights the need for structured offender treatment based on the 'RNR model's' core principles of 'risk,' 'need,' and 'responsivity.' Drawing on criminological theories and empirical evidence, the paper emphasizes the significance of addressing criminogenic factors to reduce recidivism. By analyzing existing literature on juvenile justice, the paper demonstrates how the RNR model, typically employed in Western contexts, can be adapted for India's socio-cultural environment to enhance the effectiveness of juvenile rehabilitation. The findings suggest that integrating RNR-informed interventions into the juvenile justice system can improve long-term rehabilitation outcomes and reduce re-offense rates among young offenders.Abstract
How to Cite
Downloads
Similar Articles
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- D. Jayaprasanth, J. Arul Melissa, Extended Kalman filter-based prognostic of actuator degradation in two tank system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Royan Chhetri, Prem Kumar N, Polyphenolic compounds as novel reno-modulatory agents in the management of diabetic nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.