Green inventory model for growing items with constraints under demand uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.1.10Keywords:
Sustainability, Spherical Triangular Fuzzy numbers, Economic Order Quantity, Discrete Ordering, Slaughter age, growing items, ConstraintsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An economic order quantity model for fast-growing animals is a mathematical or statistical framework used to analyze and forecast the financial aspects of maintaining and rearing animals that grow quickly while adhering to sustainable and environmentally friendly breeding practices. This model generally considers several variables and aspects involved in the production and management of these animals, such as the cost of acquisition, retention, and disposal, cost of feeding, as well as taxes on the emission of carbon dioxide and cost of shortage. Carbon dioxide production can be expressed through a functional polynomial equation, wherein the variables are impacted by both the age of the animals and the mortality function. This study proposes an economic growth quantity model for rapidly growing animals with discrete ordering, slaughter, and service level constraints where the shortage is permitted and is back ordered under uncertain demand. When an animal reaches the consumption age, it is prepared for processing and eventual slaughter to make meat products. The model aims to find the ideal age for slaughter and the most efficient quantity of newly hatched chicks procured from the supplier, aiming to minimize the overall expenses. We used spherical triangular fuzzy numbers to represent uncertain demand. Finally, we employ numerical examples to elucidate the envisaged model.Abstract
How to Cite
Downloads
Similar Articles
- S. Jerinrechal, I. Antonitte Vinoline, A vendor-constrained economic production quantity model integrating scrap recovery under sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vinodini R, Ritha W, The economic order quantity model for sustainable green inventory considers deterioration impact on the real-time replacement and various reorder points with imperfect quality items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Vinodini R, Ritha W, Sasitharan Nagapan, An inventory model on the impact of green investment with deteriorating items and planned back orders for economic efficiency and environmental sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Nalini S., Ritha W, Sustainable inventory model with environmental factors using permissible delay in payments , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Vaishali, M. Mary Mejrullo Merlin, The Study on Plithogenic Fuzzy Sets & its Properties , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Economic Order Quantity under Perishability: Analytical and Iterative Approaches to Cost Minimization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper

