Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.04Keywords:
Juvenile delinquency, Offender treatment, The RNR model, Juvenile justice system.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Juvenile crime in India is a pressing issue that requires tailored rehabilitation approaches. This paper explores the application of the "Risk-Need-Responsivity (RNR) model" as a conceptual model for treating juvenile offenders within the Indian legal context. The study reviews correctional practices and highlights the need for structured offender treatment based on the 'RNR model's' core principles of 'risk,' 'need,' and 'responsivity.' Drawing on criminological theories and empirical evidence, the paper emphasizes the significance of addressing criminogenic factors to reduce recidivism. By analyzing existing literature on juvenile justice, the paper demonstrates how the RNR model, typically employed in Western contexts, can be adapted for India's socio-cultural environment to enhance the effectiveness of juvenile rehabilitation. The findings suggest that integrating RNR-informed interventions into the juvenile justice system can improve long-term rehabilitation outcomes and reduce re-offense rates among young offenders.Abstract
How to Cite
Downloads
Similar Articles
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vishnu Prasad C, Ramaprabha D, Do tax compliance costs mediate the relationship between the complexity of tax structure and fairness perceptions? Evidence from manufacturers , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Moyliev Gayrat, Yunuskhodjaev Akhmadkhodja, Saidov Saidamir, Babakhanov Otabek, Mirsultanov Jakhongir, To study references and analysis of an experimental model for skin burns in rats , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shiv Kumar, Vinay Chauhan, Empowering Indian consumers to embrace electric vehicles through the unified theory of acceptance and use of technology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. A. Askerov, The role of improving the business environment in agriculture in ensuring the country’s food security , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.