Immersive learning: A virtual reality teaching model for enhancing english speaking skills
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.22Keywords:
Virtual reality, English speaking skills, Immersive learning, Interactive environments, Educational technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Speaking abilities are an essential component of communicating effectively and expressing oneself personally. They are significant in various contexts, such as social, professional, and intellectual. In addition to establishing stronger interpersonal relationships, improving confidence, and contributing to success in collaborative contexts, proficient in speaking can present their views clearly and concisely, participate in meaningful conversations, and convince others. It is necessary to have good speaking abilities to communicate effectively across cultural boundaries and develop one’s profession in today’s globalized society. An innovative virtual reality (VR) teaching paradigm is presented in this study to enhance the English-speaking abilities of students who are enrolled in professional programs. This virtual reality (VR) model mimics actual communication settings by immersing students in realistic and engaging worlds. This model also allows students to engage in active practice, receive quick feedback, and feel emotionally engaged. This paradigm emphasizes individualized, context-based conversation practice to enhance fluency, pronunciation, and self-assurance in speaking languages.Abstract
How to Cite
Downloads
Similar Articles
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Gunjan Choudhary, Anupriya Roy Srivastava, Examining identity crisis in Samina Ali’s Madras on Rainy Days , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Jabeen, A. R. M. Shanavas, Hazard regressive multipoint elitist spiral search optimization for resource efficient task scheduling in cloud computing , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Rubeena Yasmin, Yashodhara Verma, Reena Lawrence, Biowaste-derived Nanoparticles and Their Preparation: A Review , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.