Immersive learning: A virtual reality teaching model for enhancing english speaking skills
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.22Keywords:
Virtual reality, English speaking skills, Immersive learning, Interactive environments, Educational technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Speaking abilities are an essential component of communicating effectively and expressing oneself personally. They are significant in various contexts, such as social, professional, and intellectual. In addition to establishing stronger interpersonal relationships, improving confidence, and contributing to success in collaborative contexts, proficient in speaking can present their views clearly and concisely, participate in meaningful conversations, and convince others. It is necessary to have good speaking abilities to communicate effectively across cultural boundaries and develop one’s profession in today’s globalized society. An innovative virtual reality (VR) teaching paradigm is presented in this study to enhance the English-speaking abilities of students who are enrolled in professional programs. This virtual reality (VR) model mimics actual communication settings by immersing students in realistic and engaging worlds. This model also allows students to engage in active practice, receive quick feedback, and feel emotionally engaged. This paradigm emphasizes individualized, context-based conversation practice to enhance fluency, pronunciation, and self-assurance in speaking languages.Abstract
How to Cite
Downloads
Similar Articles
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shaik Rubeena Yasmin, Yashodhara Verma, Reena Lawrence, Biowaste-derived Nanoparticles and Their Preparation: A Review , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. R. Jasmine Begum, M. Parveen, S. Latha, IoT based home automation with energy management , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.