Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.26Keywords:
Feature Selection, Filter based Feature Selection, Wrapper Approach, Optimization Technique, Clinical dataset.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection is a critical preprocessing step in the development of machine learning models, particularly in the healthcare domain, where datasets often contain numerous features that may not contribute significantly to predictive performance. This study presents a comparative analysis of various feature selection techniques applied to healthcare datasets, evaluating their effectiveness in improving model accuracy and reducing computational costs. We investigate traditional filter-based methods, such as information gain and chi-square, alongside wrapper-based approaches and hybrid techniques that combine the strengths of both. Using multiple healthcare datasets encompassing diverse medical conditions, we assess the impact of these techniques on classification performance using metrics such as accuracy, precision, recall, and F1-score. Additionally, we analyze the robustness and scalability of each method in handling high-dimensional data. The findings reveal significant differences in performance, highlighting the strengths and weaknesses of each feature selection approach within the healthcare context. This comparative study provides valuable insights for researchers and practitioners, guiding them in selecting appropriate feature selection techniques to enhance predictive modeling in healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anita Yadav, Neerja Kapoor, Shivji Malviya, Sandeep K. Malhotra, COVID-19 Pandemic and the Global Vaccine Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hema Khanna, Poonam Singh, Seema Rani Sarraf, Shikha Gola, STRESS AND JOB SATISFACTION IN EMPLOYEES WITH TYPE- A AND TYPE- B PERSONALITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.