Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.26Keywords:
Feature Selection, Filter based Feature Selection, Wrapper Approach, Optimization Technique, Clinical dataset.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection is a critical preprocessing step in the development of machine learning models, particularly in the healthcare domain, where datasets often contain numerous features that may not contribute significantly to predictive performance. This study presents a comparative analysis of various feature selection techniques applied to healthcare datasets, evaluating their effectiveness in improving model accuracy and reducing computational costs. We investigate traditional filter-based methods, such as information gain and chi-square, alongside wrapper-based approaches and hybrid techniques that combine the strengths of both. Using multiple healthcare datasets encompassing diverse medical conditions, we assess the impact of these techniques on classification performance using metrics such as accuracy, precision, recall, and F1-score. Additionally, we analyze the robustness and scalability of each method in handling high-dimensional data. The findings reveal significant differences in performance, highlighting the strengths and weaknesses of each feature selection approach within the healthcare context. This comparative study provides valuable insights for researchers and practitioners, guiding them in selecting appropriate feature selection techniques to enhance predictive modeling in healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- Pallavi Dheer, Aditi Sharma, Mallika Joshi, Rajesh Rayal, Indra Rautela, Rakesh Rai, Narotam Sharma, Serological and Biochemical Profiling of Pandemic Dengue Virus in Clinical Isolates During An Outbreak in Dehradun Region , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Jonnakuti V. G. Rama Rao, Muthuvel Balasubramanian, Chaladi S. Gangabhavani, Mutyala A. Devi, Kona D. Devi, A TLBO algorithm-based optimal sizing in a standalone hybrid renewable energy system , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja Pathak, Shweta Kumari, An investigation on the impact of vedic mathematics on higher secondary school student’s ability to expand mathematical units , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.