Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.27Keywords:
Smart grid, Recurrent neural network, Long short-term memory, Temporal fusion transformer, Prophet.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The widespread adoption of smart home technologies has led to a significant increase in the generation of high-frequency energy consumption data from smart grids. Accurate forecasting of energy consumption in smart homes is crucial for optimizing resource utilization and promoting energy efficiency. This research work investigates the precision of energy consumption forecasting within a smart grid environment, employing machine learning algorithms such as convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), temporal fusion transformer (TFT) and Prophet. The CNN model extracts spatial features, while RNN and LSTM capture temporal dependencies in time series data. Prophet, recognized for handling seasonality and holidays, is included for comparative analysis. Utilizing a dataset from Pecan Street, Texas, performance metrics like mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) assess each model’s accuracy. This work aids in improving energy management systems, contributing to sustainable and efficient energy use in residential environments.Abstract
How to Cite
Downloads
Similar Articles
- ABHAYA K. SINGH, IMPLICATIONS OF CLIMATE CHANGE IN THE HIMALAYAN REGION AND ITS IMPACT ON INDIAN SECURITY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Rattan Singh, Sushil Gupta, Anil Kumar, EFFECTS OF SOURCES, INFORMATION, COMMUNICATION AND KNOWLEDGE IN HIV/AIDS AWARENESS PROGRAMME IN PUNJAB. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- S. Sathiyavathi, V. Mathivannan, Selvi. Sabhanayakam, Cd4+ CELL COUNTS IN THE PATIENTS OF HIV INFECTED IN SALEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nand Kishore, Abhaya Kumar Singh, THE ROLE OF REMOTE SENSING TECHNOLOGY IN COUNTERNAXALITE OPERATIONS: PROBLEMS AND PROSPECTS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Muzafar Sheikh, Mehar Fatima, Q.A. Naqvi, A POTYVIRUS ISOLATED FROM COCCINIA GRANDIS(L.)VOIGT IN ALIGARH. INDIA. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- R. K. Gupta, Mukesh Kumar, BIODIVERSITY AND BIOTECHNOLOGY , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Mohit Kalra, Arpan Nautiyal, Krishnapal Singh, Health Assessment of Buksa Tribe: Exploring CSR Models for Indigenous Community Empowerment in Ramnagar Block, Nainital District , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- L. K. Mishra, A. P. Singh, AGE AND CREATIVITY: EFFECT OF CHRONOLOGICAL AGE ON MANAGER’S CREATIVITY , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Preeti Gupta, Shalie Malik, Photoperiodic Supervision and Adaptability in Avian System , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

