Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.27Keywords:
Smart grid, Recurrent neural network, Long short-term memory, Temporal fusion transformer, Prophet.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The widespread adoption of smart home technologies has led to a significant increase in the generation of high-frequency energy consumption data from smart grids. Accurate forecasting of energy consumption in smart homes is crucial for optimizing resource utilization and promoting energy efficiency. This research work investigates the precision of energy consumption forecasting within a smart grid environment, employing machine learning algorithms such as convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), temporal fusion transformer (TFT) and Prophet. The CNN model extracts spatial features, while RNN and LSTM capture temporal dependencies in time series data. Prophet, recognized for handling seasonality and holidays, is included for comparative analysis. Utilizing a dataset from Pecan Street, Texas, performance metrics like mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) assess each model’s accuracy. This work aids in improving energy management systems, contributing to sustainable and efficient energy use in residential environments.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Suresha S, Corporate bonds vis-a-vis bond market: Global economy , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Management strategies for sustainable development goals: A roadmap to Viksit Bharat@2047 , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Yogalakshmi, Awareness on environmental issues and sustainable practices among college students - with special reference to Chennai city region , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

