Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.27Keywords:
Smart grid, Recurrent neural network, Long short-term memory, Temporal fusion transformer, Prophet.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The widespread adoption of smart home technologies has led to a significant increase in the generation of high-frequency energy consumption data from smart grids. Accurate forecasting of energy consumption in smart homes is crucial for optimizing resource utilization and promoting energy efficiency. This research work investigates the precision of energy consumption forecasting within a smart grid environment, employing machine learning algorithms such as convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), temporal fusion transformer (TFT) and Prophet. The CNN model extracts spatial features, while RNN and LSTM capture temporal dependencies in time series data. Prophet, recognized for handling seasonality and holidays, is included for comparative analysis. Utilizing a dataset from Pecan Street, Texas, performance metrics like mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) assess each model’s accuracy. This work aids in improving energy management systems, contributing to sustainable and efficient energy use in residential environments.Abstract
How to Cite
Downloads
Similar Articles
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jayendra K. Singh, Gyan P. Singh, Sanjay K. Singh, Son preference and children sex composition in Uttar Pradesh: An empirical analysis , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Bhavya Sathenapalli, Kali Charan Sabat, Unleashing entrepreneurial spirit: Driving innovation and growth in a rapidly changing world , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Aman Bora, Ajay Kumar, Akhilesh Dwivedi, Exploring effective methods of conflict resolution: Strategies and challenges for sustainable peace , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.

