Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.27Keywords:
Smart grid, Recurrent neural network, Long short-term memory, Temporal fusion transformer, Prophet.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The widespread adoption of smart home technologies has led to a significant increase in the generation of high-frequency energy consumption data from smart grids. Accurate forecasting of energy consumption in smart homes is crucial for optimizing resource utilization and promoting energy efficiency. This research work investigates the precision of energy consumption forecasting within a smart grid environment, employing machine learning algorithms such as convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), temporal fusion transformer (TFT) and Prophet. The CNN model extracts spatial features, while RNN and LSTM capture temporal dependencies in time series data. Prophet, recognized for handling seasonality and holidays, is included for comparative analysis. Utilizing a dataset from Pecan Street, Texas, performance metrics like mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) assess each model’s accuracy. This work aids in improving energy management systems, contributing to sustainable and efficient energy use in residential environments.Abstract
How to Cite
Downloads
Similar Articles
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Varsha Sharma, Krishna Kumar Gupta, Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Priyanka, Sandeep, Tarang Shrivastava, Sandeep Kumar, Vinay Viratia, Kinesio Taping Along with PNF Stretching Improved Ankle Dorsiflexion in Children with Spastic Diplegic Cerebral Palsy , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Shalini Tiwari, To Explore the Salt Stress Responsive Long Non-coding RNA(s) Mechanism in Contrasting Rice (Oryza stiva L.) Genotypes , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Naresh Vyas, Bhagirath Choudhary, Manu Purohit, Taxonomical Description of One Species of Soil Nematode Fauna in Bilara , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Vinay Kumar Singh, Biodiversity Conservation and Sustainable Development: India’s Heritage Contribution , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

