Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.27Keywords:
Smart grid, Recurrent neural network, Long short-term memory, Temporal fusion transformer, Prophet.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The widespread adoption of smart home technologies has led to a significant increase in the generation of high-frequency energy consumption data from smart grids. Accurate forecasting of energy consumption in smart homes is crucial for optimizing resource utilization and promoting energy efficiency. This research work investigates the precision of energy consumption forecasting within a smart grid environment, employing machine learning algorithms such as convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), temporal fusion transformer (TFT) and Prophet. The CNN model extracts spatial features, while RNN and LSTM capture temporal dependencies in time series data. Prophet, recognized for handling seasonality and holidays, is included for comparative analysis. Utilizing a dataset from Pecan Street, Texas, performance metrics like mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE) assess each model’s accuracy. This work aids in improving energy management systems, contributing to sustainable and efficient energy use in residential environments.Abstract
How to Cite
Downloads
Similar Articles
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- G Gayathri Devi, R Radha, Smart alerting services: Safeguarding women and children in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

