DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.24Keywords:
IoT, Agriculture, Machine learning, Data imputation, Random forest, Domain-specific rules, Crop recommendation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper proposes the Domain Rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10 % of missing values. A comparison analysis with the usual imputation techniques such as Mean Imputation, kNN Imputation, Linear Regression, EM Algorithm, Multiple Imputation, and the standard MissForest was performed and the proposed method was found to perform better. The DRMF algorithm attained an unmatched Root Mean Squared Error (RMSE) value of 0.025 and a Mean Absolute Error (MAE) value of 0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a Mean Absolute Percentage Error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the insight offered by domain-specific agricultural rules.Abstract
How to Cite
Downloads
Similar Articles
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. K. Mishra, BIOREMEDIATION: A BIOTECHNOLOGICAL APPROACH TOWARD ENVIRONMENTAL MANAGEMENT , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ramalakshmi V, Prioritizing the factors affecting employee relations and its influence on job performance , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kunwar Ananad Singh, Poonam Pandey, ROLE OF ANTHROPOGENIC EMISSIONS IN CLIMATE CHANGE , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shemal Dave, Dhaval Vyas, Jyotindra Jani, Capital adequacy and systemic risk: Evidence from selected Indian private sector banks , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Prashant Saxena, Kapil Kumar, P. V. Malik, Jyoti Saxena, EFFECT OF PHYSICO-CHEMICAL CHARACTERISTICS ON CYANOBACTERIAL DIVERSITY IN THREE FISH CULTURE PONDS OF MEERUT REGION , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- SOBTI R.C., KIRTIPAL N., THAKUR H., JANMEJA A.K., POLYMORPHISM IN INTERLEUKIN-4 GENE AND THE RISK OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE IN A NORTH INDIAN POPULATION : A CASE-CONTROL STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper