DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.24Keywords:
IoT, Agriculture, Machine learning, Data imputation, Random forest, Domain-specific rules, Crop recommendation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper proposes the Domain Rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10 % of missing values. A comparison analysis with the usual imputation techniques such as Mean Imputation, kNN Imputation, Linear Regression, EM Algorithm, Multiple Imputation, and the standard MissForest was performed and the proposed method was found to perform better. The DRMF algorithm attained an unmatched Root Mean Squared Error (RMSE) value of 0.025 and a Mean Absolute Error (MAE) value of 0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a Mean Absolute Percentage Error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the insight offered by domain-specific agricultural rules.Abstract
How to Cite
Downloads
Similar Articles
- Shri Prakash, Sunil Kumar, Population Dynamics of Sarus Crane (Grus antigone antigone, Linn.) in and around Alwara Lake of district - Kaushambi (U.P.), India , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Maya Kumari, Vikas Y Patade, Z Ahmad, INVOLVEMENT OF PLANT MICRORNAS IN ABIOTIC STRESS RESPONSES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- G. S. Singh, S. S. Rath, S. S. Singh, EFFECT OF NUMBER OF FEEDING ON DISEASE INCIDENCE IN TASR SILKWORM, ANTHERAEA MYLITTA D. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- AMRINAL CHANDRA, H.C. RAI, “SYNTHESIS AND SPECTRAL STUDIES OF Co(II) AND Ni(II) COMPLEXES WITH SCHIFF BASE LIGAND 1,6-DIMERCAPTO-1,6 DIAMINO-2,4,5-TRIAZA-3-PHENYL-3-HEXENE” , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Rashmi Rani, ROLE OF NEUROTICISM AND EXTRAVERSION FACTORS OF PERSONALITY ON LIFE SATISFACTION IN MARRIED COUPLES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Vibhu Tripathi, India’s transformative journey: A decade and a half of growth, innovation, and inclusive progress , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 27 28 29 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper