DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.24Keywords:
IoT, Agriculture, Machine learning, Data imputation, Random forest, Domain-specific rules, Crop recommendation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper proposes the Domain Rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10 % of missing values. A comparison analysis with the usual imputation techniques such as Mean Imputation, kNN Imputation, Linear Regression, EM Algorithm, Multiple Imputation, and the standard MissForest was performed and the proposed method was found to perform better. The DRMF algorithm attained an unmatched Root Mean Squared Error (RMSE) value of 0.025 and a Mean Absolute Error (MAE) value of 0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a Mean Absolute Percentage Error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the insight offered by domain-specific agricultural rules.Abstract
How to Cite
Downloads
Similar Articles
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Alok Sharma, Roumi Deb, Sanjay Kumar Manjul , Cultural continuity and change through ceramic ethnoarchaeology: A comparative analysis of Rang Mahal and contemporary pottery in Nohar, Hanumangarh district, Rajasthan , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rakhimov S. Bekturdievich, Grave structures of the population of the lower part of the Amudarya in the islamic period (On the example of archeological monuments of IX-XIII centuries) , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Poojith K. D. P, Somashekhara ., Dasharatha P. Angadi, Assessing the impact of cyclonic storm Tauktae on shoreline change in Mangaluru coast using geospatial technology , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Heikham G. Chanu, Sudha A. Raddi, Anita Dalal, Sangeeta N. Kharde, Shivani Tendulkar, Association between the socio-demographic variables of women admitted for delivery to a Tertiary Care Hospital and their maternal and neonatal outcome - A cross-sectional study , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Aditi Sahariya, Chellapilla Bharadwaj, Iwuala Emmanuel, Afroz Alam, Phytochemical Profiling and GCMS Analysis of Two Different Varieties of Barley (Hordeum vulgare L.) Under Fluoride Stress , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 22 23 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper