DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.24Keywords:
IoT, Agriculture, Machine learning, Data imputation, Random forest, Domain-specific rules, Crop recommendation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper proposes the Domain Rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10 % of missing values. A comparison analysis with the usual imputation techniques such as Mean Imputation, kNN Imputation, Linear Regression, EM Algorithm, Multiple Imputation, and the standard MissForest was performed and the proposed method was found to perform better. The DRMF algorithm attained an unmatched Root Mean Squared Error (RMSE) value of 0.025 and a Mean Absolute Error (MAE) value of 0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a Mean Absolute Percentage Error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the insight offered by domain-specific agricultural rules.Abstract
How to Cite
Downloads
Similar Articles
- U. Perachiselvi, R. Balasubramani, Funding agencies in Tamil Nadu State Universities: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Meera Yadav, F. D. Yadav, Effect of TLCV on Metabolic Parameter and Yield of Tomato , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- UMA SHANKAR SHUKLA, AN INFLATED PROBABILITY MODEL FOR INFECTION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Anurag Tripathi, Shri Prakash, Prem Narayan Tripathi, Impact of SARS-CoV-2 (COVID-19) on the Nervous System: A Critical Review , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper