DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.24Keywords:
IoT, Agriculture, Machine learning, Data imputation, Random forest, Domain-specific rules, Crop recommendation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In the realm of IoT-driven precision agriculture, addressing missing data is crucial for reliable crop recommendation systems. This paper proposes the Domain Rules and MissForest (DRMF) algorithm to handle the above mentioned challenge. The proposed DRMF algorithm was thoroughly tested on an IoT agriculture dataset with the introduction of a missingness mechanism in the form of MAR with 10 % of missing values. A comparison analysis with the usual imputation techniques such as Mean Imputation, kNN Imputation, Linear Regression, EM Algorithm, Multiple Imputation, and the standard MissForest was performed and the proposed method was found to perform better. The DRMF algorithm attained an unmatched Root Mean Squared Error (RMSE) value of 0.025 and a Mean Absolute Error (MAE) value of 0.012, displaying a significant superiority over its competitors. It is important to note that the algorithm also achieved a Mean Absolute Percentage Error (MAPE) of 5.0% and an R-squared value of 0.970, with the overall accuracy rate being 99.0%. The quantitative findings serve to emphasize the effectiveness of the DRMF algorithm in improving the prediction accuracy of crop recommendation models. The novelty of this research is in the combined approach that merges the computational power of the MissForest algorithm, and the insight offered by domain-specific agricultural rules.Abstract
How to Cite
Downloads
Similar Articles
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Vibhu Tripathi, India’s stand on GM crops , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Tarandeep Kaur, Sangeeta Taneja, Kashmiri Embroidery: Sustaining Cultural Heritage in a Globalized World , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- SOBTI R.C., KIRTIPAL N., THAKUR H., JANMEJA A.K., POLYMORPHISM IN INTERLEUKIN-4 GENE AND THE RISK OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE IN A NORTH INDIAN POPULATION : A CASE-CONTROL STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, INVOLVEMENT OF PLANT MICRORNAS IN ABIOTIC STRESS RESPONSES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- G. S. Singh, S. S. Rath, S. S. Singh, EFFECT OF NUMBER OF FEEDING ON DISEASE INCIDENCE IN TASR SILKWORM, ANTHERAEA MYLITTA D. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Mohit Kalra, Arpan Nautiyal, Krishnapal Singh, Health Assessment of Buksa Tribe: Exploring CSR Models for Indigenous Community Empowerment in Ramnagar Block, Nainital District , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
<< < 36 37 38 39 40 41 42 43 44 45 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

