A PPR-based energy-efficient VM consolidation in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.17Keywords:
Cloud environment, Energy consumption, Energy-efficient approach, VM consolidation, VM migrationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The tendency to do more jobs while consuming less energy is crucial to energy efficiency in the cloud environment. To use less energy while performing more tasks at the best throughput, this study provides an energy-efficient technique (PPR_DWMMT_1.1) for VM consolidation in a cloud domain. Our approach uses the PPR to determine the upper threshold for overload detection and the lower threshold for underload detection. Additionally, PPR_DWMMT_1.1 considers the overall workload utilisation of the data centre when selecting a lower threshold, which could reduce VM migrations. Our proposed method, PPR DWMMT 1.1, is compared to the simulation results of the four reference techniques, IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5, and THR_RS_0.8. Our solution has been demonstrated to use less energy, trigger fewer host shutdowns and live migrations, and achieve the best performance when compared to the other four approaches.Abstract
How to Cite
Downloads
Similar Articles
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Gurpreet S. Saund, Kulandai Samy, Eco-critical dystopia and anthropocentrism in Margaret Atwood’s Oryx and Crake , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.