A PPR-based energy-efficient VM consolidation in cloud computing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.17Keywords:
Cloud environment, Energy consumption, Energy-efficient approach, VM consolidation, VM migrationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The tendency to do more jobs while consuming less energy is crucial to energy efficiency in the cloud environment. To use less energy while performing more tasks at the best throughput, this study provides an energy-efficient technique (PPR_DWMMT_1.1) for VM consolidation in a cloud domain. Our approach uses the PPR to determine the upper threshold for overload detection and the lower threshold for underload detection. Additionally, PPR_DWMMT_1.1 considers the overall workload utilisation of the data centre when selecting a lower threshold, which could reduce VM migrations. Our proposed method, PPR DWMMT 1.1, is compared to the simulation results of the four reference techniques, IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5, and THR_RS_0.8. Our solution has been demonstrated to use less energy, trigger fewer host shutdowns and live migrations, and achieve the best performance when compared to the other four approaches.Abstract
How to Cite
Downloads
Similar Articles
- Mayur Vyas, Piyush Mehta, The sentimental and financial journey of women navigating e-commerce , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Jyoti Vishwakarma, Sunil Kumar, Navigating the Skies: An Analysis of ESG Practices in the Airline Industry , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- JAY SHANKAR SINGH, D.P. SINGH, R.K GUPTA, GENETICALLY MODIFIED PLANTS : BENEFITS AND ENVIRONMENTAL PROBLEMS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nivethra Selvaraj , Dr. R. Prathiba Devi, Eco-friendly natural dyes and their application on printing graphics , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rupesh Mandal, Bobby Sharma, Dibyajyoti Chutia , Smart flood monitoring in Guwahati city: A LoRa-based AIoT and edge computing sensor framework , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Kshema Manu, Malathi S, A Comprehensive Study on Addressing Trust Erosion in Multimedia in The Indian Context , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.

