
Abstract
The tendency to do more jobs while consuming less energy is crucial to energy efficiency in the cloud environment. To use less energy 
while performing more tasks at the best throughput, this study provides an energy-efficient technique (PPR_DWMMT_1.1) for VM 
consolidation in a cloud domain. Our approach uses the PPR to determine the upper threshold for overload detection and the lower 
threshold for underload detection. Additionally, PPR_DWMMT_1.1 considers the overall workload utilization of the data center when 
selecting a lower threshold, which could reduce VM migrations. Our proposed method, PPR DWMMT 1.1, is compared to the simulation 
results of the four reference techniques, IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5, and THR_RS_0.8. Our solution has been demonstrated 
to use less energy, trigger fewer host shutdowns and live migrations, and achieve the best performance when compared to the other 
four approaches.
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Introduction
Cloud computing is a paradigm of computing that provides 
hosted services over the Internet via a browser or web-based 
application, such as social media sites and apps (Instagram, 
Facebook, YouTube, WhatsApp, and so on), email (Gmail, 
Proton Mail, Zoho Mail, Outlook, Yahoo! Mail, iCloud Mail, 
AOL Mail, GMX, and so on), banking and financial services, 
and many more (Buyya et al., 2008). Cloud computing 
provides several different services, referred to as service 
layers, such as infrastructure as a service, platform as a 
service, and software as a service. All of these services are 
available on a pay-as-you-go basis with no geographic 
limitations. Data centers are similar to farmsteads with 
multiple servers and provide services such as storage, 
data management, networking, application usage, various 

OS usage, and recovery and backup to consumers. At the 
infrastructure level, cooling systems consume a lot of energy 
to cool data centers, which generate a lot of heat and 
consume an immense amount of energy when the system 
is idle (el Kafhali & Salah, 2018).

This results in huge financial losses incurred by both 
users and service providers. A typical data center may use 
up to 25,000 kWh per day. Data centers consume roughly 3% 
of worldwide electricity and about 26 nuclear power plants, 
according to reports (Asad & Rehman Chaudhry, 2017). As 
a direct consequence, the exorbitant power consumption 
of virtualized data centers causes system instability, CO2 
emissions, energy waste, and a poor return on investment 
(Karuppasamy & Balakannan, 2018). So, in the current 
context, one of the primary challenges for data centers is the 
development of power management techniques to address 
the issue of energy consumption and CO2 emissions in cloud 
data centers (Naidu & Chadha, 2020).

One approach to lowering energy consumption is 
virtual machine (VM) consolidation, in which VMs are 
replaced regularly to reduce the number of active servers. 
In VM consolidation, live migration to maximize resource 
utilization also maintains service-level agreements (SLAs) 
and application performance. The VM consolidation 
approach is divided into several steps (Moghaddam et al., 
2019). The first step is the identification of over-utilized 
servers that may violate service-level agreements and under-
utilized servers that must be shut down to lower the number 
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of active hosts. Then, a selection of VM aims to discover the 
best VMs to migrate from over-utilized servers, and finally, 
a VM placement method that selects hosting servers for 
the appropriately selected VMs. Once underutilized and 
overutilized servers have been identified, VM consolidation 
strategies must attempt to relocate some of their hosted 
VMs to meet SLAs and minimize overall data center energy 
usage (Yadav et al., 2018).

Best-known VM consolidation approaches that address 
energy usage use static or dynamic lower threshold levels 
based on existing server utilization to identify underutilized 
servers rather than taking into account the whole data center 
workload. Unfortunately, some of these solutions have 
drawbacks, such as deploying a VM on a target node that is 
about to be evacuated, which increases the number of active 
hosts per data center and leads to more VM migrations. The 
proposed strategy for detecting underutilized servers takes 
into account the entire data center workload. However, 
data center hosts are heterogeneous, containing both 
low- and high-performance computers. Low-performance 
servers emit more heat than high-performance servers 
despite carrying more workloads and using less electricity 
(Farahnakian, Hanini et al., 2019).

As a result, in this analysis, we examined both the overall 
data center workload and server characteristics. Our strategy 
also promotes the best possible balance of host utilization 
and energy saving. The goal is for servers to use the least 
amount of energy possible. For this purpose, we employed 
the upper and lower threshold values for overload and 
underload detections of servers.

Related Work
We evaluated and summarised the various existing research 
findings on VM consolidation to reduce energy consumption 
in data centers below.

Beloglazov et al. deployed dynamic server consolidation 
methodologies to achieve SLAs and reduce data center 
energy consumption. The linked framework employs higher 
and lower CPU utilization criteria, as well as a best-fit lowering 
technique, to manage the placement of the selected VMs, 
which are to be relocated from overutilized to underutilized 
hosts. Furthermore, to detect overutilized host methods, 
the median absolute deviation (MAD), interquartile range 
(IQR), and local regression (LR) algorithms were established. 
The offered solutions reduce SLA violations and optimize 
energy usage, but they increase the cost of live migrations 
(Beloglazov & Buyya, 2012).

Patel et al. developed a host utilization aware (HUA) 
method to find and place virtual machines (VMs) on under-
utilized hosts. The approach considers the total usage of 
the entire data center to set the value of the lower limit. 
Experimental results showed that HUA is efficacious in 
identifying under-utilized hosts and reducing energy 
consumption (Patel & Patel, 2020).

Zahedi et al. suggested a unique VM consolidation approach 
for achieving load balancing in cloud data centers. The idea 
is to consolidate VMs on high-performance servers to save 
energy consumption while increasing workload (Zahedifard 
et al., 2017). The consolidation issue was considered a multi-
issue by Li et al., with limitations, for instance, minimizing 
energy consumption, ensuring QoS, and maximizing 
resource utilization. An energy-aware DVM strategy was used 
to handle this challenge, which migrates VM while fulfilling 
limitations on the likelihood of several kinds of resources 
being overloaded. The suggested method achieves the best 
possible balance of increasing energy efficiency, maximizing 
resource use, and ensuring QoS (Li et al., 2018).

Zhang et al. suggested a two-strategy solution for work 
scheduling optimization in cloud computing. A classifier 
is employed in the first strategy to categorize tasks based 
on previous data. A matcher is used in the second step to 
dynamically match tasks to a concrete VM. The suggested 
technique surpasses current algorithms, including max-min 
and min-min in terms of task scheduling and execution, as 
per experimental evidence (Zhang & Zhou, 2018)

Wang et al. created a novel paradigm for sustainable 
cloud computing that is energy-aware dynamic VM 
consolidation. The principal goal of this scheme was to move 
VMs to hosts with the least amount of available MIPS after 
they have been assigned. The simulation results show that 
the suggested work saves energy and meets SLA better than 
other methods [Wang, H. & Tianfield, H., 2018]

Ruan et al. presented a method called “PPRGear”, based 
on sampling utilization levels with different performance-
to-power ratios (PPR) of every host. When compared to 
established techniques, IqrMc, MadMmt, and ThrRs, the 
proposed solution saves around 69.31% of energy while 
requiring fewer migrations and shutdowns and little 
performance degradation for cloud computing data centers 
(Ruan et al., 2019).

Unlike earlier studies in the field, we aim to improve 
cloud services by optimizing resource usage to lower 
energy usage whilst reducing the number of live migrations 
significantly in our proposed model.

Assessment Models and Metrics
In this study, we find that server power usage is proportional 
to CPU utilization, assuming that an idle server requires 
around 70% of the power that a fully occupied server 
requires. As a basis, we define power consumption P(cu) in 
terms of CPU utilization in Equation (1).

 	 (1)

Where k is the percentage of energy used by idle hosts 
(70%), Pmax is the maximum power of a running server at 
100% CPU usage, and cu is the current CPU utilization.

Due to the workload uncertainty, CPU consumption may 
change over time and be defined as current utilization (t). As 
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a result, Equation (2) expressed a host’s energy consumption 
as an integral of power consumption over time.

 	 (2)

Two metrics were utilized in the IaaS model to define 
service level agreement violation (SLAV). Equation (3) 
represents the function.

 	 (3)

Where  denotes service level agreement 
violation time per active host, which represents the 
proportion of time that servers have 100% CPU utilization. 
Equation. (4) represents the function:

 	 (4)

Where Pm is the number of servers (i.e., physical 
machines); T_sp denotes the total time that server p has 
experienced 100% CPU use, resulting in an SLA violation; 
and T_ap denotes the total time that server p has been in 
active mode. Equation (5) presents the overall performance 
decrease by VMs owing to live migrations (PD_LM):

 	 (5)

Where Vm is the number of VMs; C_dv denotes the 
estimated performance loss of VM due to migrations, and 
C_rv denotes the servers and performance loss owing to 
VM migrations.

To relate the efficiency of the algorithms with others, a 
new metric product of energy and SLA violation (ESV) was 
established in a study that combines energy usage and SLA 
violation, as shown below in Equation (6).

 	 (6)

The percentage enhancement (a)of the suggested 
approach over the existing one is calculated using 
Equation (7)

 	 (7)

Proposed Approach for VM Consolidation
The primary goal of this research is to reduce energy usage 
and keep the hosts’ performance at its best. To achieve this 
goal, the performance-to-power ratio is used. Furthermore, 
the PPR specifies energy consumption efficacy, which is 
equal to the number of server-side Java operations (SSJ) 
completed within a certain period divided by the period’s 
average active energy consumption. We used the PPR values 
from the Standard Performance and Evaluation Corporation 
(SPEC) website (https://www.spec.org/power ssj2008/
results/) in this work. Furthermore, we proposed a novel 
VM consolidation technique for efficient power utilization.

Overutilized server detection
We check a server’s PPR to identify over-utilized hosts, and an 
upper threshold is set based on the performance-to-power 

ratio (PPR). We are looking for the highest PPR between idle 
and over-utilized servers. The total CPU utilization of servers 
is then compared with the highest PPR. If the server’s CPU 
utilization surpasses the highest PPR level, the server is 
considered over-utilized as over-utilized servers consume 
more power than medium-utilized. As a result, some of the 
VMs must be relocated in order to make them medium-
utilized hosts. This design keeps all servers operating at peak 
performance over power, allowing the system to execute 
more tasks while consuming less power.

In this study, we have selected six distinct server 
configurations. Table 1 shows the PPR of these servers. The 
upper threshold is set at 90% CPU utilization for HP ProLiant 
DL325 and Dell Inc R7425 servers, 80% CPU utilization for 
HTC Fusion 2288H, 70% CPU utilization for HP ProLiant DL360 
servers, and 60% CPU utilization for FUJITSU TX1320 M4 and 
Sugon I620-G30 servers. Table 2 shows the pseudocode for 
the server over-utilized detection algorithm.

Underutilized server detection
We examine the entire usage of the data center to identify 
underutilized servers. Next, we calculate the total expected 

Table 1: PPR of selected servers

Model name 100% 90% 80% 70% 60% 50%

HP ProLiant DL325 11,726 11,299 10,570 9,735 8,812 7,797

Dell Inc R7425 15,238 14,597 13,888 13,150 12,312 11,153

HTC Fusion 2288H 13,351 15,413 16,675 16,386 15,864 14,702

HP ProLiant DL360 12,518 12,340 12,445 12,789 12,415 11,789

FUJITSU TX1320 M4 8,821 9,390 10,074 10,503 10,643 10,363

Sugon I620-G30 10,928 10,839 10,941 11,559 11,707 10,958

Table 2: Pseudocode of over-utilized server detection algorithm

1. Begin

2. Input: Hostlist, Vmlist and Initialize UpperThreshold = 0, 
TotalRequestedMips = 0

3. for each Host Host1 to Hostn

3.1 Find the upper threshold of each host, that is the highest 
performance-to-power ratio of the host

3.2 UpperThreshold = Host.GetPPR()

3.3 for each virtual machine get Vmlist Vmi to Vmj

3.3.1 Vmlist = Host.Getvmlist()

3.3.2 Update the TotalRequestedMips by adding the required Mips 
of each Vms 

3.4 End for

3.5 Obtain CPU Utilization of Host by 

3.5.1 Utilization = (TotalRequestedMips) /(Host.Get Totalmips)

3.6. Comparison Of CPU Utilization and Upper Threshold by

3.6.1 If Utilization> UpperThreshold then

3.7 Host status is Over-Utilized

4. End for. 

5. End
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number of underutilized servers. The lower threshold value 
is set dynamically depending on the higher threshold 
value and predicted number of underutilized servers. Data 
centers may be a collection of clusters. Total CPU utilization 
is the sum of all CPU use across all hosts of the same cluster. 
As a result, we computed a lower threshold value based 
on cluster size, a higher threshold value, and total CPU 
utilization for each cluster. Table 3 shows the pseudocode 
for the server’s underutilized detection algorithm.

VM selection
A physical machine (PM) may run many VMs. When a PM 
becomes overutilized, one or more VMs must be relocated 

Table 3: Pseudocode of under-utilized server detection algorithm

1. Begin

2. Inputs: PowerHost HostList, PowerModel Type, 
ExcludedHostList, Initialize: LowerThreshold = 0, MinUtilization = 
0, OverallUtilization = 0

3. Add all overutilized hosts and switched off hosts in the 
excluded hosts list

4. For each host of HostList Host1 to Hostn

4.1 if Host in Excluded HostList 

4.1.1 continue 

4.2 Utilization = host.getUtilizationofCPU() 

5. End for

6. For each host of HostList Host1 to Hostn

6.1 Get HostList of each category by

6.2 if Host.getpowerModel().equals(type) then

6.2.1 hostListbyCategory.add(host)

6.3 Get overall utilization of host category-wise

6.4 OverallUtilization += host.getUtilizationofCPU()

7. End for

8. Get the Upper Threshold Value of the same category host by 

8.1 UpperThreshold= hostListbyCategory.get(0).getPPR()

9. Find the Maximum No. of Under-Utilized hosts

9.1 MaxNoOf UnderUtilizedHosts = HostListbyCategorySize() – 
(OverallUtilization)/UpperThreshold

10. Sort of CPU Utilization of Categorised Host in Ascending order

11. Indexing the Underutilized host using Max No. of Under-
Utilized hosts 

11.1 index = MaxNoOf UnderUtilizedHosts - 1

12. Obtain a Lower Threshold value by 

12.1 LowerThreshold = Category.get(index).getUtilizationofCPU() 

13. Update the value of variable MinUtilization by MinUtilization = 
LowerThreshold

14. Comparison of Utilization and MinUtilization to get Under-
Utilized host

14.1 If utilization > MinUtilization then 

14.1.1 host status is Under-Utilized

14.2 End if

15. End

Table 4: Pseudocode of VM selection algorithm

1. Begin

2. Input: OverUtilizedHostList, Initialize: MinRam = MAX, 
OverallVmUtilization = 0, k=0.2, SelectedVm = null;

3. Obtain CPU Utilization of Host by hostUtilization = host.
getUtilizationofCPU()

4. Obtain Deviation between Upper Threshold &Host Utilization 
Deviation = (hostUtilization – host.getPPR()) +sf

5. for Vm in VmList

5.1 VmUtilization= Vm.getUtilization

5.2 If VmUtilization >= Deviation //Comparison of Vm Utilization 
and Deviation.

5.2.1 If Vm.getRam < minRam//Obtain memory Utilization of Vm 
and compare with minRam

5.2.1.1 Update MinRam with current Vm Ram

5.2.2 End if 

5.3 End if

6. End for

7. SelectedVm= Vm

8. If SelectedVm != NULL

8.1 VmListToMigrate.add(SelectedVm)

8.2 for each Vm in VmList

8.2.1 Update overall Utilization by OverallVmUtilization += 
Vm.getUtilization

8.2.2 Add vms to migrating vm list

8.2.3 If OverallVmUtilization >= Deviation

8.2.3.1 break   //go to step 10

8.2.4 End if

8.3 End for

9. End if

10. Return VmListToMigrate

11. End

to lower the PM’s workload and restore its normal. As a 
consequence, the SLA will be upheld. This paper proposes 
a unique VM selection approach, deviation with minimal 
migration time (DWMMT), which calculates the difference 
between the upper threshold and CPU usage. The VM 
chosen to migrate from the overutilized host will have 
CPU utilization more than or equal to the deviance and the 
shortest migration time required to return the server to its 
normal state. Table 4 depicts the VM selection algorithm’s 
pseudocode. The selection process employs the safety factor 
«sf» of 0.2 to avoid CPU overhead due to VM live migration, 
as live migration causes a 10% CPU usage overhead.

VM placement
Three classifications of data centers are under-utilized, 
middle-utilized, and over-utilized. The middle-utilized hosts 
will be the primary receptacles for VM deployment. Table 5  
depicts the pseudocode of the VM placement algorithm. 
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We add overutilized and switched-off to the excluded 
hosts list, first for finding under-utilized hosts and second 
for finding new locations for selected hosts. This operation 
helps to avoid future searches of such hosts, resulting in a 
computational improvement. Then the under-utilized server 
prevents considering a container for VM deployment. We 
then try to identify the best allocation map for the VM of 
each underutilized host to reduce total energy consumption. 
We also prevent overwhelming the hosting servers when 
deploying VMs.

Simulation setup
CloudSim is widely considered one of the most powerful 
cloud simulators. It supports virtualized resource 
management and modeling, as well as power consumption, 
workload dynamics, virtual machine migration, and SLA 
evaluations (Patel, 2016). To evaluate the power efficiency 
of our technique PPR_DWMMT1.1, CloudSim 3.0.3 simulator 
with the deployment of six real-world unique host models 
and various workloads used. 

To simulate a cloud environment, a data center with 900 
homogenous host PCs in six models: HP ProLiant DL325, 
Dell Inc R7425, HTC Fusion 2288H, HP ProLiant DL360, 
FUJITSU TX1320 M4 and Sugon I620-G30 is employed. The 
specifications of these servers are displayed in Table 6. 
Furthermore, we used the SPECpower ssj2008 benchmark 
suite (SPECpower ssj2008 Results) to deploy the power 
model in CloudSim, as shown in Table 7.

Heterogenous with single core 1000 VM were set up in 
response to customer requirements. Table 8 displays the 
characteristics of the VM classes based on Amazon EC2 
(Amazon EC2 Instance Types - Amazon Web Services)(https://
aws.amazon.com/ec2/instance-types/, s. d.).

For testing purposes, we used real-world system 
workload traces. This research makes use of Planet-Lab node 
data (Park & Pai, 2006). These data are based on CPU usage 
from 10 randomly chosen days in March and April 2011.

The proposed solutions leverage a safety parameter to 
manage energy consumption and SLA violations. We use this 
to change allocation when our method fails. In our situation, 
the safety parameter is 1.1, whereas the baseline techniques 
have 1.5, 1.2, 2.5, and 0.8 for IQR_MMT, LR_MC, MAD_MU 
and THR_RS, respectively.

Table 5: Pseudocode of VM placement algorithm

1. Begin

2. 1. Input: OverUtilizedHostList, UnderUtilizedHostList, 
ExcludedHostList; Initialize: indexKey = 0;

3. Get an UnderUtilized Host and a new placement for Vms // Add all 
the OverUtilized hosts and switched off hosts to ExcludedHostList for 
Finding UnderUtilizedHost and New Placement of Vms.

4. While IndexKey < UnderUtilizedHostList.size

4.1 If HostList.size == (ExcludedHostListFindingUnderUtilizedHost.
size)

4.1.1 Break // go to the end of the while loop

4.2 End if

4.3 UnderUtilizedHost = 
getUnderUtilizedHost(excludedHostsForFindingUnderUtilizedHost)

4.4 if (UnderUtilizedHost == null) 

4.4.1 Break // go to the end of the while loop

4.5 End if

4.6 ExcludedHostsFindingUnderUtilizedHost.
add(UnderUtilizedHost)

4.7 ExcludedHostsFindingNewVmPlacement.
add(UnderUtilizedHost)

4.8 For each vm of Hosts

4.8.1 minPowerConsumption = Double.MAX_VALUE 

4.8.2 PowerHost allocatedHost = null

4.8.3 For each server in HostList

4.8.3.1 if ExcludedHostListFindingNewPlacecement.contains(server)

4.3.1.1 Continue// (go to for loop)

4.8.3.2 End if

4.8.3.3 Utilization=Server.getUtilizationOfCPUAfterAllocation(vm)

4.8.3.4 if Utilization >UpperThreshold for this server

4.8.3.4.1 Continue	 // (go to for loop)

4.8.3.5 End if

4.8.3.6 PowerConsumption = server.
getEstimatedPowerAfterAllocation (vm)

4.8.3.7 If PowerConsumption < minPowerConsumption

4.8.3.7.1 AllocatedHost = server 

4.8.3.7.2 PowerConsumption = minPowerConsumption

4.8.3.8 End if

4.8.4 End for

4.8.5 If allocatedHost != NULL

4.8.5.1 If!ExcludedHostListFindingUnderUtilized.
contains(allocatedHost)

4.8.5.1.1 ExcludedHostListFindingUnderUtilized.add (allocatedHost)

4.8.5.2 End if

4.8.6 allocation.add(vm, allocatedHost)

4.8.7 Else

4.8.7.1 Break

4.8.8 End if

4.9 End for

5. IndexKey = indexKey+1

6. End while

7. End

Table 6: Configurations of servers

Model Name MIPS Core RAM 
(GB)

Bandwidth 
(Gbps)

Number of 
hosts

HP ProLiant DL325 2000 32 128 1 150

Dell Inc R7425 2200 64 128 1 150

HTC Fusion 2288H 2000 56 112 1 150

HP ProLiant DL360 2500 28 48 1 150

FUJITSU TX1320 M4 3700 6 16 1 150

Sugon I620-G30 2100 44 192 1 150
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Results and Discussion
As demonstrated in Figure 1, PPR_DWMMT_1.1 consumes 
the least amount of energy among the other algorithms 
throughout the course of 10 days. This is because PPR_
DWMMT1.1 determines upper thresholds based on the 
server’s performance class. The adaptive upper thresholds 
reasonably split the cloud data center into performance 
clusters in which all PMs belonging to a specific class of 
performance work at their best throughput with the least 
amount of energy consumption. 

In comparison to the other methods, PPR_DWMMT_1.1 
significantly reduces the average energy consumption 
over 10 days. We found an average of 15.417 kWh for 
IQR_MMT_1.5, 14.643 kWh for LR_MC_1.2, 15.792 kWh 
for MAD_MU_2.5, 14.581 kWh for THR_RS_0.8 kWh and  
1.98 kWh for PPR_DWMMT_1.1, as shown in Figure 2.

The number of live migrations continues to be a primary 
factor influencing energy consumption. Reducing such a 

number may decrease the total data center load and, as a 
result, may help to reduce SLA violations. As shown in Figure 3,  
our scheme has the lowest number of live migrations for 
the entire 10-day period. The cause for this is the dynamic 
lower barrier used to select underloaded hosts. By removing 
overloaded and switched-off hosts, the estimated value 
of the maximum number of hosts that can be evacuated 
remains a good measure for assessing the lower threshold, 
which is computed based on the associated higher 
threshold. Moreover, our VM selection strategy selects the 
VM with the best balance of workload and migration time. 
As a result, PPR_DWMMT_1.1 achieves fewer live migrations 
than the other remaining VM selection rules.

As shown in Figure 4, our scheme has the lowest number 
of host shutdowns for the entire 10-day period. 

Table 7: Power consumption (watt) at different loads

Model Name 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

HP ProLiant DL325 181 170 161 153 145 136 127 116 105 92.3 61.7

Dell Inc R7425 287 271 253 234 214 197 182 168 154 138 84.9

HTC Fusion 2288H 437 341 280 249 220 198 180 161 142 123 51.3

HP ProLiant DL360 237 217 191 163 144 126 109 94.1 80.7 68.1 38.9

FUJITSU TX1320 M4 73.9 62.1 51.6 43.3 36.8 31.2 26.9 23.5 20.5 17.9 12.8

Sugon I620-G30 364 334 295 243 206 183 167 150 134 117 53.1

Table 8: Characteristics of VM categories

VM Category MIPS Core RAM 
(MB)

Bandwidth 
(Mbps)

High-CPU medium 
instance

2500 1 870 100

Extra-large instance 2000 1 1740 100

Small instance 1000 1 1740 100

Micro instance 500 1 613 100

Figure 1: Total energy consumption (Kwh) Figure 3: Number of VMs migration

Figure 2: Average energy consumption
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usage and SLA violation. SLAV is followed, and the energy 
consumption is reduced to better levels.

Conclusion
Reduced energy usage is a critical need for maximizing 
the benefits of cloud providers. A significant strategy for 
managing energy consumption is VM consolidation. This 
article presents an energy-efficient technique, namely 
PPR_DWMMT_1.1, for consolidating VMs in cloud data 
centers. The basic objective is to reduce energy usage 
while taking into account host utilization. We attempted to 
maintain the data center running at maximum throughput 
while consuming the least amount of energy. 

The results of our proposed approach PPR_DWMMT_1.1 
are compared with the four reference approaches, namely 
IQR_MMT_1.5, LR_MC_1.2, MAD_MU_2.5 and THR_RS_0.8. 
Our approach has been observed to reduce average energy 
consumption by 87.15, 86.47, 87.46 and 86.42% compared 
to existing approaches IQR_MMT_1.5, LR_MC_1.2, MAD_
MU_2.5 and THR_RS_0.8, respectively. Furthermore, our 
approach reduced the number of live migrations, resulting in 
less performance deterioration by VMs owing to migrations. 
In future work, our proposed method can be extended to 
a real-time cloud environment with consideration of other 
variable factors. 
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