Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.70Keywords:
workplace bullying, female bullying, natural language processing, Big Data, sentiment analysis, social computing, machine learning, female bullyingDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Awareness surrounding the #MeToo movement prompts a crucial question: How does society perceive female harassment? Acknowledging the broad nature of this inquiry, we refined our focus to examine society’s perception, specifically concerning workplace bullying of females. This paper dissects the topic of female workplace bullying, revealing distinct perspectives on denial, acceptance, and intervention held by mental health practitioners. Our study initially adopted a broad perspective, investigating society’s outlook on workplace bullying, which we subsequently narrowed down to female workplace bullying. Our preliminary findings unveiled (1) Society’s stance on this issue appeared divided between denial and acceptance, (2) Individuals affected by workplace bullying, particularly females, exhibited clear signs of negative psychological impact, and (3) Interestingly, discussions within society revolved around various intervention techniques aimed at mitigating these psychological effects. To delve deeper into the exploration of intervention techniques, we analyzed the most frequently mentioned hashtags. Consequently, these hashtags shed light on three primary characteristics associated with mental health practitioners: denial, acceptance, and intervention. Our research, employing a natural language processing (NLP) approach, identified these three characteristics as separate hashtags.Abstract
How to Cite
Downloads
Similar Articles
- Teklil Abadeye, Teshome Yitbarek, Isreal Zewide, Kibinesh Adimasu, Assessing soil fertility influenced by land use in Moche, Gurage Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nida Syeda, Kishore Selva Babu, Exploring the role of digital humanities in the centralization of knowledge production: Clusters, networks, or echo chambers , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Anita Mathew, Sneha Kanade, Fostering safe and inclusive workplace toward a sustainable and high-performing work culture , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.