Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.70Keywords:
workplace bullying, female bullying, natural language processing, Big Data, sentiment analysis, social computing, machine learning, female bullyingDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Awareness surrounding the #MeToo movement prompts a crucial question: How does society perceive female harassment? Acknowledging the broad nature of this inquiry, we refined our focus to examine society’s perception, specifically concerning workplace bullying of females. This paper dissects the topic of female workplace bullying, revealing distinct perspectives on denial, acceptance, and intervention held by mental health practitioners. Our study initially adopted a broad perspective, investigating society’s outlook on workplace bullying, which we subsequently narrowed down to female workplace bullying. Our preliminary findings unveiled (1) Society’s stance on this issue appeared divided between denial and acceptance, (2) Individuals affected by workplace bullying, particularly females, exhibited clear signs of negative psychological impact, and (3) Interestingly, discussions within society revolved around various intervention techniques aimed at mitigating these psychological effects. To delve deeper into the exploration of intervention techniques, we analyzed the most frequently mentioned hashtags. Consequently, these hashtags shed light on three primary characteristics associated with mental health practitioners: denial, acceptance, and intervention. Our research, employing a natural language processing (NLP) approach, identified these three characteristics as separate hashtags.Abstract
How to Cite
Downloads
Similar Articles
- Nitika, Kuldeep Chaudhary, A critical review of social media advertising literature: Visualization and bibliometric approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pratik Ghosh, Sriram M, A systematic review of social media communication with respect to fashion brands , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Himadri Nalinkumar Raval, Effective strategies in English language teaching: Enhancing writing proficiency among learners , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Ankush Wadhwa, Sanjay Nandal, Development of an Index in Social Science: A Systematic Literature Review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

