Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.70Keywords:
workplace bullying, female bullying, natural language processing, Big Data, sentiment analysis, social computing, machine learning, female bullyingDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Awareness surrounding the #MeToo movement prompts a crucial question: How does society perceive female harassment? Acknowledging the broad nature of this inquiry, we refined our focus to examine society’s perception, specifically concerning workplace bullying of females. This paper dissects the topic of female workplace bullying, revealing distinct perspectives on denial, acceptance, and intervention held by mental health practitioners. Our study initially adopted a broad perspective, investigating society’s outlook on workplace bullying, which we subsequently narrowed down to female workplace bullying. Our preliminary findings unveiled (1) Society’s stance on this issue appeared divided between denial and acceptance, (2) Individuals affected by workplace bullying, particularly females, exhibited clear signs of negative psychological impact, and (3) Interestingly, discussions within society revolved around various intervention techniques aimed at mitigating these psychological effects. To delve deeper into the exploration of intervention techniques, we analyzed the most frequently mentioned hashtags. Consequently, these hashtags shed light on three primary characteristics associated with mental health practitioners: denial, acceptance, and intervention. Our research, employing a natural language processing (NLP) approach, identified these three characteristics as separate hashtags.Abstract
How to Cite
Downloads
Similar Articles
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. S. Deepika, Ajay Massand, Influence of Social Media Marketing on Purchase Intention of Gen Z , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Aditi Malik, Rishi Chaudhry, Mohit, Urvashi Suryavanshi, Mapping the landscape of political advertising research: A comprehensive bibliometric analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Maysam A. Khabisi, Azar B. Masoudzade, Neda F. Rad, On the effectiveness of receiving teacher and peer feedback as a mediator on Iranian English as a Foreign Language learners’ writing skill: Mobile-mediated vs. direct instruction , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

