Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.52Keywords:
Denial of service, Denial of sleep, Internet of Things, Wake-up radio, Network security, Wireless sensor networks, AODV protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Internet of Things (IoT) amalgamates a large number of physical objects that are distinctively identified, ubiquitously interconnected and accessible through the Internet. IoT endeavors to renovate any object in the real world into a computing device that has sensing, communicating, computing and control capabilities. There are a budding number of IoT devices and applications and this escort to an increase in the number and complexity of malicious attacks. It is important to defend IoT systems against malicious attacks, especially to prevent attackers from acquiring control over the devices. Energy utilization is significant for battery-enabled devices in the IoT and wireless sensor networks which are operated long time period. The Denial-of-Sleep attack is an explicit type of denial-of-service attack that beleaguered a battery-powered device’s power supply that results in the exhaustion of this critical resource. This paper focuses on the survey on Denial of sleep attacks in Wireless Sensor networks and the IoT.Abstract
How to Cite
Downloads
Similar Articles
- Payal Saxena, Sustainable finance – A master key to sustainable development , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- RENA MEHTA, ECO DESIGN IN TEXTILE AND CLOTHING , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- S. Gomathi, C. Radhika, A secure messaging application using steganography and AES encryption a dual-layer secure messaging system , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- R. Chandra, R. P. Singh, B. K. Prasad, Effect of Genotype and Explant on Shoot Regeneration in Brassica juncea , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Anjum Parvez, Seema Yadav, Sandhya Verma, Electronic Record as Evidence in the Courts: An Analysis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- P.S. Negi, Ranjit Singh, Zakwan Ahmed, IN VITRO PROPAGATION OF POTENTILLA FULGENS HOOK (BAJRADANTI) – A HIGH VALUE MEDICINAL HERB FOR COMMERCIAL CULTIVATION , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.

