Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.52Keywords:
Denial of service, Denial of sleep, Internet of Things, Wake-up radio, Network security, Wireless sensor networks, AODV protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Internet of Things (IoT) amalgamates a large number of physical objects that are distinctively identified, ubiquitously interconnected and accessible through the Internet. IoT endeavors to renovate any object in the real world into a computing device that has sensing, communicating, computing and control capabilities. There are a budding number of IoT devices and applications and this escort to an increase in the number and complexity of malicious attacks. It is important to defend IoT systems against malicious attacks, especially to prevent attackers from acquiring control over the devices. Energy utilization is significant for battery-enabled devices in the IoT and wireless sensor networks which are operated long time period. The Denial-of-Sleep attack is an explicit type of denial-of-service attack that beleaguered a battery-powered device’s power supply that results in the exhaustion of this critical resource. This paper focuses on the survey on Denial of sleep attacks in Wireless Sensor networks and the IoT.Abstract
How to Cite
Downloads
Similar Articles
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- James L T Thanga, Ashley Lalremruati, Agent’s roles and perspectives of life insurance market in North-East India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

