Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.52Keywords:
Denial of service, Denial of sleep, Internet of Things, Wake-up radio, Network security, Wireless sensor networks, AODV protocol.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Internet of Things (IoT) amalgamates a large number of physical objects that are distinctively identified, ubiquitously interconnected and accessible through the Internet. IoT endeavors to renovate any object in the real world into a computing device that has sensing, communicating, computing and control capabilities. There are a budding number of IoT devices and applications and this escort to an increase in the number and complexity of malicious attacks. It is important to defend IoT systems against malicious attacks, especially to prevent attackers from acquiring control over the devices. Energy utilization is significant for battery-enabled devices in the IoT and wireless sensor networks which are operated long time period. The Denial-of-Sleep attack is an explicit type of denial-of-service attack that beleaguered a battery-powered device’s power supply that results in the exhaustion of this critical resource. This paper focuses on the survey on Denial of sleep attacks in Wireless Sensor networks and the IoT.Abstract
How to Cite
Downloads
Similar Articles
- Anita Mathew, Sneha Kanade, Fostering safe and inclusive workplace toward a sustainable and high-performing work culture , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Tassar Aniam, Sneha Kanade, A study on the inventory management of perishable products , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kakali Ghosh, Rajeshwar Mukherjee, Avasthātraya: Deeper insights , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.