A comprehensive review of urban growth studies and predictions using the Sleuth model
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.48Keywords:
Urban growth, Urban growth prediction, SLEUTH, CA algorithm, Spatial analysisDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Urban growth is a complex phenomenon It has been the subject of in-depth research for the last few years. There are various models used to measure and simulate urban growth. Most of these methods are founded on GIS & RS techniques coupled with the CA algorithm, as only these tools and techniques have the capabilities to conduct spatiotemporal studies, manage spatiotemporal dynamics, and provide a detailed depiction and modeling from the bottom-up tactic. Recently, the slope, land use, exclusion, urbanization, transportation, and hill shade (SLEUTH) model has been the most commonly used model. It is easily accessible because it is open source; moreover, its source code is also easily accessible. The SLEUTH model’s name alludes to the necessary inputs —slope, land use, excluded area, urban extension, transportation, network and hillshade. The model has been used in many cities and has proven to be efficient. The present review paper reviews the past literature pertaining to urban development and prediction to further support the research on urban planning, urban growth and prediction.Abstract
How to Cite
Downloads
Similar Articles
- Bayelign A. Zelalem, Ayalew Ali, BRICS and South African economic growth: Implications for Ethiopia, the new BRICS member , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Harsh Mineshbhai Shah, A literature-based analysis of studies in urban landscape concept , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chetna Dhull, Asha ., Impact of crop insurance and crop loans on agricultural growth in Haryana: A factor analysis approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Vibhoo Bajpai, Public policy as a nudger of cultural sustainability amidst rapid urbanization: A case of Delhi NCR , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- P. Rathinabhagya, J. Merline Vinotha, Fuzzy vehicle routing problem for a municipal solid waste management system with greenhouse gas emission at various disposal stages , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- RAMENDRA KUMAR DWIVEDI, PREM NARAYAN TRIPATHI, AGE AND GROWTH RELATIONSHIP OF CATLA CATLA IN AQUATIC ECOSYSTEM OF RIVER GHAGHRA AT AYODHYA , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- G. Chitra, Hari Ganesh S., Cultural algorithm based principal component analysis (CA-PCA) approach for handling high dimensional data , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

