Multistate modeling for estimating clinical outcomes of COVID-19 patients
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.05Keywords:
Multistate model, TPM, Stacked Probability plot, Competing risks, ICU, COVID-19Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The severity of COVID-19 is often associated with severe pneumonia requiring intensive care unit (ICU) without Ventilation and ICU with ventilation. Clinical outcomes depend on the length of the ICU and the duration of the states. It is difficult to estimate how many people will experience each of these outcomes (discharge, death) due to the time dependence of the data and the potential for multiple events. Because of their time dependence, potential multiple events, and competing, terminal events of discharge, alive and death, estimating these quantities statistically is challenging. The main objective of this paper is to study the time-dependent progress of COVID-19 patients through the multistate approach with hazard rates and transition probabilities. The methodology allows for the analysis of active instances by accommodating censoring and the probability plots offer comprehensive information in a straightforward manner that can be easily shared with decision-makers in healthcare capacity planning.Abstract
How to Cite
Downloads
Similar Articles
- Kalpana Deshmukh, Aparna Dighe, Harshal Raje, Impact of mindfulness-based programs on reducing stress and enhancing academic performance in college students , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kamna Kandpal, Piyashi Dutta, P.Sasikala Ravichandran, Examining the relationship between motivation and incentives in the context of maternal health awareness: A study of Asha workers in Uttarakhand , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sivasankar G. A, Study of hybrid fuel injectors for aircraft engines , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.