Multistate modeling for estimating clinical outcomes of COVID-19 patients
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.05Keywords:
Multistate model, TPM, Stacked Probability plot, Competing risks, ICU, COVID-19Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The severity of COVID-19 is often associated with severe pneumonia requiring intensive care unit (ICU) without Ventilation and ICU with ventilation. Clinical outcomes depend on the length of the ICU and the duration of the states. It is difficult to estimate how many people will experience each of these outcomes (discharge, death) due to the time dependence of the data and the potential for multiple events. Because of their time dependence, potential multiple events, and competing, terminal events of discharge, alive and death, estimating these quantities statistically is challenging. The main objective of this paper is to study the time-dependent progress of COVID-19 patients through the multistate approach with hazard rates and transition probabilities. The methodology allows for the analysis of active instances by accommodating censoring and the probability plots offer comprehensive information in a straightforward manner that can be easily shared with decision-makers in healthcare capacity planning.Abstract
How to Cite
Downloads
Similar Articles
- Karan Berry, Shiv Kumar, Exploring the mediating role of gastronomic experience in tourist satisfaction: A multigroup analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Goutam Mandal, Baibaswata Bhattacharjee, Biosynthesis of ZnO nanoparticles using the young fruit of Borassus flabellifer: Characterization and photocatalytic removal of biohazardous safranin-O dye using solar irradiation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shripada Patil, Sandeep N. Jagdale, Prashant Kalshetti, Management education system in the 21st century: Challenges and opportunities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Vijai K. Visvanathan, Karthikeyan Palaniswamy, Thanarajan Kumaresan, Green ammonia: catalysis, combustion and utilization strategies , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- T. R. Raajpandiyan, Syed T. Hussainy, U. Rizwan, A bivariate replacement policy (T, N) under partial product process , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shahala Sheikh, Lalsingh Khalsa, Nitin Chandel, Vinod Varghese, Hygrothermoelastic large deflection behaviour in a thin circular plate with non-Fourier and non-Fick law , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.