
Abstract
The severity of COVID-19 is often associated with severe pneumonia requiring intensive care unit (ICU) without ventilation and ICU with 
ventilation. Clinical outcomes depend on the length of the ICU and the duration of the states. It is difficult to estimate how many people 
will experience each of these outcomes (discharge, death) due to the time dependence of the data and the potential for multiple events. 
Because of their time dependence, potential multiple events, and competing, terminal events of discharge, alive and death, estimating 
these quantities statistically is challenging. The main objective of this paper is to study the time-dependent progress of COVID-19 
patients through the multistate approach with hazard rates and transition probabilities. The methodology allows for the analysis of 
active instances by accommodating censoring and the probability plots offer comprehensive information in a straightforward manner 
that can be easily shared with decision-makers in healthcare capacity planning.
Keywords: Multistate model, TPM, Stacked Probability plot, Competing risks, Intensive care unit, COVID-19.
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Introduction
Critically ill patients frequently require intensive care unit 
(ICU) care and complex management, which has put a strain 
on healthcare systems around the world as a result of the 
COVID-19 pandemic. However, the disease course of COVID-19 
is complex and patients frequently move between different 
clinical states over time which makes it difficult to analyze 
and predict outcomes. To date, there have been limited 
studies on the long-term clinical outcomes of COVID-19 
patients who have survived ICU admission. There is a 
growing interest in the use of a multistate model to analyze 
the time-dependent progression of COVID-19 patients. 

In a joint analysis employing a multistate approach, 
several steps are involved. These steps encompass defining 
the desired states, specifying transition probabilities, and 

estimating model parameters using statistical methods. 
The estimated model can then be used to make predictions 
and evaluate interventions. A Markov model is a method 
commonly employed for conducting such analyses. It 
operates on the assumption that the transition probability 
solely relies on the current state, independent of the past. 
This allows for a simplified and efficient analysis of the data. 
Multistate modeling is a promising statistical technique 
that can provide valuable insights into the disease course 
and clinical outcome of a patient by modeling transitions 
through multiple clinical states over time.

This approach considers that patients can move between 
different clinical states over time and these transitions 
can be modeled and analyzed through the estimation of 
hazard rate and transition probabilities. This information 
can provide valuable insight into the time-dependent 
progression of patients and can be used to predict the 
likelihood of transitioning to a specific clinical state.

Multistate models have found applications in various 
fields which include health research, epidemiology, and 
social sciences. They enable the analysis of multiple 
outcomes simultaneously like disease diagnosis, treatment, 
and mortality which offer a flexible and powerful approach 
to handle complex data structures. Multistate models 
provide insight into the dynamics of different outcomes over 
time which leads to a more comprehensive understanding 
of the system under study. They can answer various 
research questions such as assessing the effectiveness of 
an intervention, predicting the risk of a particular event or 
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identifying factors that influence the transition between 
states. There is currently limited research on the multistate 
models to analyze the clinical course of critically ill COVID-
19 patients. Previous studies have indicated that multistate 
models have the potential to predict clinical outcomes 
of critically ill patients which include those with COVID-
19. Neumann, et al., (2022) presented a multistate model 
which analyzed the healthcare transitions of older adults. 
They identified several potential risk factors for poor health 
outcomes and highlighted the importance of considering 
multiple health states when analyzing clinical trial data.

Another study by Önen Dumlu et al., (2022) analyzed 
the optimal screening policies for preclinical Alzheimer’s 
disease by a partially observable Markov model which allows 
the incorporation of multiple states of disease progression. 
The authors presented how the multistate approach allows 
different screening strategies to impact disease progression 
over time.

Zins, et al., (2017) used a multistate model and compared 
the relationship between body mass index (BMI) and health 
between ages 50 and 75 and estimated the transitions 
between different states for the competing risks of 
morbidity and mortality. Wan, et al., (2016) compared multi-
state models and explored the advantages and limitations 
of different multistate modeling approaches and also 
discussed a comprehensive analysis of the performance of 
each model in capturing disease progression and transitions 
between different health states.

Lange et al. (2015) utilized a multistate model and 
performed a joint analysis of multistate disease processes, 
considering random informative observation times within 
electronic medical records data. Moghaddass et al. (2015) 
introduced a predictive analytics approach to analyze 
inspection data. They employed a nonhomogeneous 
semi-Markov model to investigate the transitions between 
different states. Alafchi, et al., (2021) analysed multivariate 
longitudinal and multistate in renal transplantation 
data through simulation studies and a real data analysis. 
Eleuteri, et al., (2018) evaluated the effectiveness of different 
treatment strategies for preventing metastatic death using 
transition probabilities between different health states. 
Woods et al. (2018) conducted estimations regarding the 
long-term survival and cost-effectiveness associated with 
the incorporation of docetaxel into long-term hormone 
therapy for patients with prostate cancer and incorporated 
different health states and transitions using a multistate 
model and simulated the outcomes of different treatment 
options over time.  Kasajima et al. (2021) utilized a multistate 
transition model to project the future health and functional 
status of older individuals. They estimated the probabilities 
of transitioning between different health states. Sutradhar 
and Barbera (2021) explored the progression of reported 
cancer symptoms in individuals using multistate models. 

Their findings suggested that other than traditional methods 
the approach provides more accurate estimates of symptom 
progression. Pawlowski (2021) examined a large multi-state 
health system to explore the potential connection between 
cerebral venous sinus thrombosis (CVST) and COVID-19 
vaccines, as well as non-COVID vaccines. The study aimed to 
investigate any possible association between these vaccines 
and CVST. Stewart, et al., (2021) analyzed the impact of 
healthcare-associated infections (HAIs) on length of hospital 
stay using a multistate model which allowed for the modeling 
of transitions between different health states accounting for 
the competing risks of HAI, hospitalization, and discharge.

Chaou, et al., (2020) examined the dynamic flow of 
emergency patient management with a multistate model. 
Their study provided insights into the length of stay of 
patients and the time spent in different stages of ED 
management. Cranmer, et al., (2020) compared survival 
analysis and multi-state approach to analyse oncology 
data. The authors found that multi-state modeling 
provides additional insights into the disease progression 
and highlighted the potential benefits of using multi-state 
modeling in oncology research. Brumm, et al., (2020) found 
that patients with sickle cell disease had higher odds of 
morbidity and readmissions as well as longer hospital 
stays and higher hospitalization costs. Lorenti, et al., (2020) 
estimated the probabilities of transitioning between states 
of work, disability and death by using a multistate life table 
model. Zhang, et al., (2020) analyzed interval-censored 
event-history data for neurocysticercosis research using a 
multistate model. Their approach allowed for the modeling 
of transitions between different disease states. Vermuntt, et 
al., (2019) estimated the duration of the various clinical stages 
using a multistate model and discussed the importance of 
considering multiple stages in disease modeling. Jawad, et 
al., (2019) analyzed the outcomes of different types of hip 
arthroplasty for hip fractures, including transitions between 
different states such as in-hospital mortality, discharge to 
rehabilitation, and readmission using a multistate model. 
Bluhmki, et al., (2019) used a multistate methodology to 
improve risk assessment under time-varying drug intake 
for pregnancy outcomes and made a clear understanding 
of the risks and transitions between different health states 
over time. Wang, et al., (2019) estimated disease progression 
among individuals with human immunodeficiency virus 
(HIV) using a multistate modeling approach and provided a 
comprehensive understanding of the complex dynamics of 
HIV treatment and disease progression over time. Farewell, 
et al., (2019) analyzed a prolonged disease state using 
multistate modeling and estimated the probabilities of 
disease progression, and recovery as well as the associated 
time to each event. Tapak, et al., (2018) analyzed time-to-
event data on acquired immune deficiency syndrome 
(AIDS) and mortality post-HIV infection and identified 
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prognostic factors and developed predictive models for 
survival outcomes by using multistate recursively imputed 
survival trees. Leva, et al., (2017) analyzed patients with heart 
failure and allowed for the modeling of transitions between 
different health states for the competing risks of states by 
using a multistate model. 

Stephens‐Shields, et al., (2017) investigated the transitions 
between different CKD states. They used a multistate model 
and analyzed the relationship between blood pressure (BP) 
and chronic kidney disease. Mitchell, et al., (2016) applied a 
multistate model and analyzed the relationship between 
length of stay, mortality and healthcare-associated urinary 
tract infections also investigated the competing risks of 
hospitalization and mortality. 

Piccarreta & Studer (2019) discussed the methodological 
challenges in the holistic analysis of the life course using 
a multistate model which allows to the modeling of 
transitions between different life course states. Martinot, 
et al., (2018) have incorporated time-dependent covariates 
and transitions between different health states to assess 
the effect of PIM on frailty over time. Longué, et al., (2018) 
analyzed treatment administration and toxicity associated 
with targeted therapies by using a multistate model which 
allows for a more comprehensive understanding and risks of 
the treatment. Cnudde, et al., (2018) investigated the risk of 
surgery and mortality, also estimated the multiple possible 
health states and transitions over time by using multistate 
analysis. The motivation for using a multistate model in this 
work is to develop a comprehensive and accurate approach 
to estimate the clinical outcomes of critically ill COVID-19 
patients. This model has the potential to offer a more precise 
forecast of patient outcomes which can assist healthcare 
professionals in making informed clinical decisions and 
allocate resources efficiently. The aim of this study is to 
estimate the time-dependent probabilities of transition 
between different health states and evaluate the hazard rates 
associated with COVID-19 patient clinical outcomes using 
multistate models and examine the transitions between 
different clinical states including ICU admission, ventilation, 
and impact of these transitions on patient outcomes 
including mortality, hospital length of stay, and functional 

status at ICU discharge. This study will build upon the 
existing literature on multistate modeling and also provide a 
comprehensive analysis of the clinical outcomes of COVID-19 
patients. The insights gained from this study could also help 
in the development of predictive models to identify patients 
at high risk of adverse outcomes and target interventions 
to improve patient outcomes. This study provides a more 
accurate and comprehensive analysis of the disease and 
clinical outcomes of critically ill COVID-19 patients, building 
upon the promising results of previous studies in this area.

Methodology
A multistate model consists of boxes representing different 
states and arrows representing transitions between them. 
This model typically includes two types of states: initial or 
transient states from which individuals can enter and exit 
and absorbing states from which individuals cannot exit 
once they enter.

Multistate Markov models are used to estimate various 
parameter such as transition probabilities, sojourn times, 
and transition hazards for each state and transition between 
states. These models are useful for analysing complex event 
data and can provide insights into the probability and timing 
of transition between different states (Figure 1). This model 
has three initial states: State 1 represents patients in the ICU 
without ventilation (Non-Ventilation), state 2 represents 
patients in the ICU with ventilation (Ventilation) and state 3 
represents the patients who are discharged alive from the 
ICU. Patients can enter the study in either of these three 
initial states and these states are referred to as transient 
states. The multistate model used to study the ICU stays in 
diseased patients include absorbing state: State 4 where 
patients die from the ICU or even after patient discharged 
(Death). Once patients enter an absorbing state there are 
no more transitions for them that is, they can no longer 
move to any other state. Depend on the patient health 
status they may receive ventilation be discharged alive or 
die while in state 1 (Non-Ventilation). Similarly, patients in 
state 2 (Ventilation) may also be discharged alive or die while 
receiving ventilation. Patients can transition back and forth 
between states 1 and 2 (ventilation and Non-ventilation) 
multiple times during their ICU stay.

The patient ICU stay can be described using a time 
homogeneous Markov chain {X(t), t} with a finite state space 
S={1,2,3,4} and follow-up time denoted as τ. This chain is 
used to model the patient transitions between the different 
states (1, 2, 3 or 4) at different points in time during their stay 
in the ICU. In the context of a multi-state model X(t) refers to 
the time at which a patient occupies a certain state during 
their stay in the ICU. The model begins by defining the 
probabilities of transitioning between the different states 
(i.e., ICU, mortality and discharge probabilities) which allows 
for the calculation of the likelihood of a patient moving from 
one state to another at any given point in time.Figure 1: Multistate model
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Transition probabilities can be used to represent the 
likelihood of transitions from one state (l) to another state 
(m) during the ICU stay in a Markov Multi-state model which 
is represented as

 = P(X(t) = m| X(s) = l),
with l,m  s, l m and 0 s t
The expression P(X(t) = m| X(s) = l) represents the 

probability that a patient will transition from state l to state 
m during their stay in the ICU given that they were in state 
l at time s and in state ‘m’ at the time ‘t’. Therefore,  
provide the likelihood of a patient moving from state l to 
state m within a specific period. The Markov property state 
that this probability only depends on the current time ‘s’ 
and the state occupied at that time and not on any past 
events. This transition probability is calculated based on the 
observed number of i→j transitions at time t divided by the 
number of individuals who were at risk in state i just before 
time t. If state i represents the non-ventilated state and state 
j represents the ventilated state then Âij(t) would indicate 
the likelihood of transitioning from the non-ventilated to 
the ventilated state at time t. By estimating these transition 
probabilities, the study provides insights into the clinical 
outcomes of critically ill COVID-19 patients in the ICU and 
identifies potential risk factors that may influence transitions 
between different states. By estimating these transition 
probabilities, the study provides insights into the clinical 
course and outcome of critically ill COVID-19 patients in the 
ICU and identifies potential risk factors that may influence 
transitions between different states.

Multistate Markov Model
After being admitted to the hospital following COVID-19, a 
patient traverses the discrete state space S= {1, 2, 3, 4}. Let 
X(t)=r represents the patient’s state at any given time t. The 
intensity, denoted as (t),  describes the rate at which the 
patient transitions to state S during the interval (t, t+∆t). 
Formally, it is defined as:

(t) =   r,s = 1,2,…,4
where r and s belong to the set {1, 2, 3, 4}
The underlying assumption here is that the multistate 

model is Markovian, implying that the likelihood of transitioning 
to a future state relies solely on the present state and not on 
the historical states. The transition intensity matrix, denoted 
as Q= , possesses the following characteristics: 

(i)   = 0 for all r, indicating that the sum of 
intensities for all transitions from state r to any other state is 

equal to zero. (ii)  = -  . signifying that the intensity 
of transitioning from state r back to itself (autotransition) is 
the negative sum of intensities for transitioning to other 
states from state r. The estimation of transition intensities 
can be achieved using maximum likelihood estimation 
procedures. By utilizing the estimated transition intensities, 
one can calculate the transition probability matrix P(t) = 

, wherein where (t) represents the probability 
of a COVID-19 patient being in state S at time (t+u), given 
that the patient was in state r at time t.

 = P(X(t+u) = s / X(t) = r)
The transition probability matrix, expressed in terms 

of the intensity matrix, is acquired as P(t) =  .

Mean Sojourn Time and Total Length of Stay
The mean sojourn time represents the average duration of a 
single stay in each transient state before transitioning to any 
other state. This can be estimated by taking the reciprocal of 
the diagonal entry -1/  in the estimated transition intensity 
matrix. In other words, the mean sojourn time is estimated as 
by -1/  where  corresponds to the intensity of transition 
to the same state r. Additionally, it is of interest to estimate 
the total length of stay in each transient state, as discussed 
in the work by Grover et al. (2013).

Results and Discussion
Data was gathered from hospital-based records of patients 
who were admitted for COVID-19 treatment. The dataset 
comprises 68 critically ill individuals who required admission 
to the ICU. The patient data were obtained during a follow-up 
period of one month. The states of the dataset represent 
the different clinical states or conditions that a patient can 
be in during the course of the disease or treatment. These 
states are often defined based on specific clinical criteria 
such as state 0 being denoted as censored, state 1 being 
denoted as ICU without Ventilation, state 2 being denoted 
as ICU with Ventilation, state 3 being denoted as discharge 
and state 4 being denoted as death. The dataset includes 
individual patient information such as the length of time 
they were on ventilation and their outcome (whether they 
were discharged alive or died).

Table 1 shows the number of transitions that occurred 
among COVID-19 patients in different states (ventilation, 
non-ventilation, discharged, or deceased) over the course 
of their treatment. This table provides information on the 
movement of patients between different treatment states 

Table 1: Transitions counts matrix for COVID-19 patients

Censored Ventilation Non-ventilation Discharge Death Total

Ventilation 6 0 12 7 23 48

Non-Ventilation 8 14 0 13 16 51

Discharge 0 8 14 0 5 27

Total 14 22 26 20 44 126
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and their outcomes. The starting state of the patient is 
depicted by the rows, while the ending state is represented 
by the columns. The cells of the table indicate the number 
of patients who transitioned from the starting state to the 
ending state. A total of 14 patients in the “Censored” state 
which means they were lost to follow-up. 6 patients who 
were initially on ventilation were removed from ventilation 
and moved to non-ventilation, while 12 patients who were 
initially in non-ventilation required ventilation during 
their treatment. There were 22 patients who ended up on 
ventilation at some point during their treatment, and 44 
patients in total died during the course of the study.

Table 2 shows the transition probabilities between 
different states (ventilation, non-ventilation, discharge, and 
death) for COVID-19 patients. The cells of the table indicate 
the probability of a patient transitioning from the starting 
state to the ending state. The sum of the probabilities of 
transitioning to ventilation, non-ventilation, discharge, and 
death is 1, which means that all patients who started in the 
ventilation state eventually transitioned to one of these 
four states. The probability for a patient to moves from a 
ventilation state to a non-ventilation state is 0.2857143, 
which means that approximately 28.6% of patients on 
ventilation transitioned to non-ventilation during their 
treatment. The probability of transitioning from ventilation 
to discharge is 0.1666667, which means that approximately 
16.7% of patients on ventilation are discharged, and the 
probability of transitioning from ventilation to death is 
0.5476190, which means that approximately 54.8% of 
patients on ventilation die.

The probability of transitioning from non-ventilation to 
discharge is 0.3023256, which means that approximately 
30.2% of patients not on ventilation are discharged, and the 
probability of transitioning from non-ventilation to death 
is 0.3720930, which means that approximately 37.2% of 
patients not on ventilation die. Overall, this table provides 
information on the likelihood of patients transitioning 
between different treatment states and outcomes, which 

could be useful for predicting the prognosis of COVID-
19 patients and evaluating the effectiveness of different 
treatment strategies.

The cohort Figure 2 provides information on the 
expected duration of patient stays in different states. To 
visualize the predicted probabilities of each state over 
the entire follow-up period a stacked probability plot is 
used. This plot is generated by multiplying the transition 
matrix by the initial distribution and graphically represents 
the probability of each state at different time points. On 
the 21st day after admission to the ICU 25.5% of patients 
experienced mortality. Of the remaining patients 33.5% 
had already been discharged from the ICU while 26% did 
not require ventilation and 15% of patients were identified 
as needing ventilation. The predicted probabilities suggest 
that patients who stay in the ICU for a longer duration and 
require mechanical ventilation, especially for an extended 
period have a higher risk of mortality rate.

Table 3 displays the expected duration of stay and 
mortality of a group of 66 critically ill COVID-19 patients 
as observed during a 28-day follow-up period. The table 
provides information about the expected duration of stay 
for the patients in this cohort. Here if a patient did not 
require ventilation at the beginning of their ICU stay they 
would be expected to stay for about 13.97 days followed by 
an additional 3.43 days of ventilation. In total their ICU stay 
would last about 17.4 days and they would have a 42% risk of 
dying. If a patient starts non-ventilation at the beginning of 
their ICU stay they are expected to have a shorter duration 
of ventilation compared to those who did not require 
ventilation. Likewise, patients who begin at ventilation 

Table 2: Transitions probability matrix for COVID-19 patients

Ventilation Non-
ventilation Discharge Death

Ventilation 0.0000000 0.2857143 0.1666667 0.5476190
Non-ventilation 0.3255814 0.0000000 0.3023256 0.3720930
Discharge 0.2962963 0.5185185 0.0000000 0.1851852
Death 0.0000000 0.0000000 0.0000000 1.0000000

Figure 2: Stacked probability plot for the entire follow-up period

Table 3: Estimated study of the expected time spent in the different states and mortality rate

68 Critically ill COVID-19 patients results at the month end

Non-ventilation duration in days Ventilation duration in days Total length of ICU stay in days Death risk

Start non-ventilation 10.19 (6.58, 14.06) 1.62 (0.30, 3.34) 11.81 (6.88, 17.4) 64% (7.5)

Start ventilation 3.57 (1.83, 5.78) 12.55 (9.44, 15.31) 19.33 (11.27, 21.09) 35% (6.7)

Full cohort 7.15 (3.18, 6.88) 6.63 (5.31, 9.86) 18.43 (8.49, 16.74) 39% (7.1)
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at the onset of their ICU stay are anticipated to require a 
longer duration of ventilation (14.05 days). These patients 
have a mortality rate of 58% (Confidence Intervals obtained 
via bootstrapping). Compared to patients who start Non-
Ventilation at the beginning of their ICU stay patients who 
start ventilation have a higher risk of death.

The study created a stacked probability plot (Figure 3) 
using a multistate model which was divided based on how 
long the patient had been in the ICU since admission. This 
plot compared the clinical progress of patients who started 
in the two initial states non-ventilation and ventilation to 
illustrate the findings. The larger size of the sample enables us 
to make visual comparisons. According to the results on the 
21st day of the 28th-day follow-up patients who started in non-
ventilation had a greater likelihood of being discharged alive 
(30 vs 21%) and a lower chance of dying (26 vs 35.2%). Initially, 
Ventilation patients have a higher probability of dying which 
results in a shorter ICU duration while, non-ventilation 
patients have a higher probability of being discharged alive 
which also results in a shorter ICU duration. This suggests that 
there are differences in the ventilator needs between patients 
who are initially admitted without ventilation compared to 
those who require ventilation upon admission.

Conclusion
The findings revealed that adopting a multistate approach 
offers significant insights into the progression of COVID-19 
patients, especially regarding metrics such as ventilation 
duration, length of ICU stay, and mortality within the 28-day 
follow-up period. The plots concisely provide extensive 
information and are easy to read. Comparisons were made 
among the clinical progression of the patients starting 
in ICU without ventilation and ICU with ventilation. The 
findings could inform clinical decision-making, and resource 
allocation and improve patient care for critically ill COVID-19 
patients. The insights gained from this study could also help 
in the development of predictive models to identify patients 
at high risk of adverse outcomes and target interventions 
to improve patient outcomes. The study will build upon 
the existing literature on multistate modeling for COVID-19 
patients and provide a comprehensive analysis of the disease 
and outcomes of critically ill COVID-19 patients. 
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