Investigating privacy-preserving machine learning for healthcare data sharing through federated learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.37Keywords:
Privacy-preserving machine learning, Federated learning, Healthcare data sharing, Comorbidity index, Data fairness, Sample size variation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Privacy-Preserving Machine Learning (PPML) is a pivotal paradigm in healthcare research, offering innovative solutions to the challenges of data sharing and privacy preservation. In the context of Federated Learning, this paper investigates the implementation of PPML for healthcare data sharing, focusing on the dynamic nature of data collection, sample sizes, data modalities, patient demographics, and comorbidity indices. The results reveal substantial variations in sample sizes across substudies, underscoring the need to align data collection with research objectives and available resources. The distribution of measures demonstrates a balanced approach to healthcare data modalities, ensuring data fairness and equity. The interplay between average age and sample size highlights the significance of tailored privacy-preserving strategies. The comorbidity index distribution provides insights into the health status of the studied population and aids in personalized healthcare. Additionally, the fluctuation of sample sizes over substudies emphasizes the adaptability of privacy-preserving machine learning models in diverse healthcare research scenarios. Overall, this investigation contributes to the evolving landscape of healthcare data sharing by addressing the challenges of data heterogeneity, regulatory compliance, and collaborative model development. The findings empower researchers and healthcare professionals to strike a balance between data utility and privacy preservation, ultimately advancing the field of privacy-preserving machine learning in healthcare research.Abstract
How to Cite
Downloads
Similar Articles
- Amanda Q. Okronipa, Jones Y. Nyame, Adoption of health information systems in emerging economies: Evidence from Ghana , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priydarshi Shireesh, Tiwari Atul Kumar, Singh Prashant, Rai Kumud, Mishra Dev Brat, Comparative Water Quality Analysis in Beso River in District Jaunpur, Azamgarh and Ghazipur Uttar Pradesh , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Poornima Dave, Aditi Shrimali, MATRIMANAS digital app for maternal mental healthcare: A research proposal , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

